Name Honnet
BrU nel Student n°0531984
UNIVERSITY

WEST LOMDON

EE2071 Micro electronic workshop:
RTL systolic multiplier

Example of chip to implement our multiplier

O Purpose:

This laboratory report is the result of our intuotion to the principle of RTL design (Register fister
Level) in Verilog HDL (Hardware Description Langugg The objective is to design a systolic multiplie
Verilog using the Simucad Silos® software. We aveng to meet this challenge by firstly designingHiDL
description of an architectural version and finasery each module that composes this multiplemfthe two
8bits inputs to the 16bits output (without forgedtiall the other signal pins). As this multiplierdesigned for
digital signal processing algorithms, it has toafse to load firstly 2 inputs and then keep 1 infgutultiply
different values to it, but more details will bevgin later.

In a first time we are going to look for diversenmbering systems to choose the best design. We are
then going to have a look on different multiplieseyns to satisfy the requirements. The chosemesil be
simply explained and tested bloc by bloc to finathplement and simulate the overall instantiatidralb the
internal components.

1 Structure of the assignment:

Introduction, structure.

Numbering systems.

Multiplications algorithms.

Examples of a few multipliers.

Requirement specification.

Verilog description of the selected multiplier.
Description of the results.

Conclusion.

AN Y NN N N NN

2 Numbering systems:

First of all, let's see have a look on a few nundb@ssification. There are two principal notatiothe positional
and non-positional system (I'm not going to invgesti the non positional system). The Babylonianeldped
the positional system (or place-value system) bassdntially on the numerals for 1 and 10. The Egyp had
a system of numerals with distinct hieroglyphsIpd0, and all the powers of 10 up to one millidfe can see
on the following table illustration of the ideamdsition system:

Position 3 2 1 0 -1 -2
Weight ® b bt B bt b?
Digit a a& a a O C2

Decimal example weighttOO0 100 10 1 0.1 0.01

As everyone knows the numbers commonly used weented by Arabs but the representation of the ones
used nowadays has had an evolution:

The numerals from al-Sizji's treatise of 969:

23 ¢#v|sviAe

1 2 = 4 3 =] 7 2 g O

The numerals from al-Biruni's treatise copied i82:0

FI¥rPr e v 7|7 e

1 Z 3 4 3 & 7 = 9 O

Al-Banna al-Marrakushi's form of the numerals:

b2 3EYi6| 789

1 z 2 4 3 & 7 g 9

It's known that several numeral bases exist andawé think about it but almost everybody use ghein
every day. The most commonly used is obviouslybthee 10 (called base decimal). The question "wi?y 10
could be asked and the answer is as simple asuthbers of our fingers.

The two other bases are the base 12 (called basgkdmal) and the base 60 (called base sexagesimal)
Those bases are simply used in time system, we Ifaheurs before the midday and 12 other before the
midnight (we use it also for the 12 months in ary€bhe base sexagesimal is used for the 60 sedorads
minute and the 60 minutes in an hour (but was diresed by the Babylonians).

There is also a few other used bases beginningépdse 1, but before that let's talk about the 0O:

The word "zero" came via FrengBrofrom Venetian languageerg which (together with “cipher") came via
Italian zefirofrom Arabico=—., safira = "it was empty"sifr = "zero", "nothing", which was used to translate
Sanskritstnya, meaningvoid or empty.. Ptolemy, influenced by Hipparchus and the Babigns, was using a
symbol for zero (a small circle with a long over)baithin a sexagesimal numeral system otherwisegus
alphabetic Greek numerals. Because it was usee@ ahon just as a placeholder, this Hellenistic zeas
perhaps the first documented use of a number ndieiOld World.

- The smallest base, the base 1 (also called ¥i€ksore used than we think, we can find it foample in jail
cells where the prisoners count the days on thiswal

gl § |
- The base 2, 8 and 16 (binary, octal and hexadgdases), used in all computers and digital system

Its use is common because of the simplicity ofrtiad, the base 2: on/off, true/false, in/fout, gbady...
Almost everything is adaptable to the binary system

i v 1
i

M B -
ﬁ'-'nw.-'-_ i
i, PR Poa il B -

decimal 0 1 4 | 5| 6 7 8 9 |10 11 (12| 13| 14| 15| 16
hexadecima 0 1 2 3 4 5 6 7 8 9 A B C D E F 10
octal 0 1 3 4 5 6 7 1011|1213 |14 | 15| 16| 17| 20
binary 0 1 (10| 11 |100|101|110(111(100010011010101141100110411101111{1000d

The base 8 is just less used nowadays but wapidsbcal: it's just a group of 3 binary digitsg@licalled bits)
that are finally represented in 1 octal digit (frénto 7).

The base 16 is now every where considering thatljgbaracter can represent a value between 03ntel
information density is really better and the sirofyi of encoding is the same than in the octalesyst

binary 10101 1010 1010 1100 1111 0111
regrouped by 4 1(0101| 1010/ 1010| 1100| 1111| 0111
regrouped in hexadecim{ 1| 5 A A C F 7
hexadecimal 15AACF7

It almost exists an infinity of other numeral systbut they are not interesting in our domain.

Just for the anecdote, a famous French (funnykesjigpbby LAPOINTE invented his own numeral system:
The numeration "Bibi":

ﬂm“d] 0 1 a2 5] 7] g 10 1 12 13

] : : z
o 0 [oA 0] 041 [1000[1001 (101 01011 [1100[1101 |
V]
1

1
o[¢ 1[0 1[1 o1 of1 11 1[1 o1 ol
1 1

1 ol1 1o olo 1lo olo 11 ol1 1)1

[
__f_i_ A AUSUTIDLY

bo | ba | be | B mlmmalhlmlda"aa

|
netation O -1 ! j|

profonciation | po [“ha

Why Bibi? Because 16 can be written 2 to the pdv&r the power 2 and as we talk about binary feritase
2, we could use the term« Bi-Binary » for the bésand « Bi-Bi-Binary » for the base 16, but it was long
then the artist decided to shorten it in "BiBi".lBoLapointe invented the notation and pronunciatibthe 16
numbers using 4 consonant and 4 vowels:

HO, HA, HE, HI, BO, BA, BE, Bl, KO, KA, KE, KI, DOPA, DE, DI.

To go back in a more serious domain, we are gardgesign a multiplier that allows taking negatiadues.
We thus need to investigate this domain:

1.1 Sign-and-magnitude
One's

One may first approach this problem of representing Binary complement Unsigned
number's sign by allocating one sign bit to repneske value interpretation interpretation
sign: set that bit (often the most significant ba)0 for a
positive number, and set to 1 for a negative numbkee 00000000 0 0
remaining bits in the number indicate the magnitgoie 00000001 1 1
absolute value). Hence in a byte with only 7 bapait
from the sign bit), the magnitude can range froff0@®0 1111101 125 125
(0) to 1111111 (127). Thus you can represent nusn
from -12710 to +12710. A consequence of thegg1111110 126 126
representation is that there are two ways to reptes, 01111111 127 127
00000000 (0) and 10000000 (-0) which is arealevast 10000000 -127 128
10000001 -126 129
This approach is directly comparable to the commay ;5900010 -125 130
of showing a sign (placing a "+" or "=" next to thember's
magnitude). Some early binary computers (e.g. |BMICj
used this representation, perhaps because of ttgaha 11111110 -1 254
relation to common usage. (Many decimal computéss a 11111111 -0 255
used sign-and-magnitude.) The values of an 8-hit integer

Alternatively, a system known as ones' complemant lsce used to represent negative numbers. The one:
complement form of a negative binary number is lbiterise NOT applied to it — the complement of its
positive counterpart. Like sign-and-magnitude repn¢ation, ones' complement has two representabibfs
00000000 (+0) and 11111111 (-0). As an exampleoties’' complement form of 00101011 (43) becomes
11010100 (-43). The range of signed numbers usimes'ocomplement in a conventional eight-bit byte is
=1270to +127%,.

To add two numbers represented in this system, dm®s a conventional binary addition, but it is then
necessary to add any resulting carry back intor¢iselting sum. To see why this is necessary, cengle
following example showing the case of the addinbr1 (11111110) to +2 (00000010).

bi nary deci nal
11111110 -1
+ 00000010 +2

1 OO'C.).OOOOO 0 <-- not the correct answer
1 +1 <--addcarry

006.00001 1 <--correct answer

In the previous example, the binary addition algnes 00000000 => not the correct answer! Only witen
carry is added back in does the correct result@0001) appear.

This numeric representation system was common derotomputers; the PDP-1 and UNIVAC 1100/2200
series, among many others, used ones'-complemtmhatic.

Note on terminologyThe system is referred to as "ones' complemestabise the negation »fis formed by
subtractingk from a long string of ones. Two's complement amigkic, on the other hand, forms the negation of
x by subtracting« from a single large power of two.

1.2 Two's complement

The problems of multiple representations of O amal teed for the end-around carry are circumvenied b
system called two's complement. In two's complemeagative numbers are represented by the bitrpatte
which is one greater (in an unsigned sense) thanoties’ complement of the positive value. In two's-
complement, there is only one zero (00000000),gbatt is really important.

Negating a number (whether negative or positigsejdne by inverting all the bits and then addirtg that
result. Addition of a pair of two's-complement igees is the same as addition of a pair of unsignedbers
(except for detection of overflow, if that is don€pr instance, a two's-complement addition of a8d -128
gives the same binary bit pattern as an unsigndiiaa of 127 and 128, as can be seen from thetabl

Decimal Two's complement

127 01111111
64 0100 0000
1 0000 0001
0 0000 0000
-1 11111111
-64 1100 0000
-127 1000 0001
-128 1000 0000

Some 8-bits numbersto note

An easier method to get the two's complementrafraber is as follows:
Example 1 Example 2

1. Starting from the right, find the first '1':01010Q 0101100

2. Invert all of the bits to the left of that ori®11011L 101QL00

...the underlined bits staying unchanged.

In computer circuitry, this easier method is nddashan the "complement and add one" method; imatihods
require working sequentially from right to left,gpagating logic changes. The method of complemgrand
adding one can be sped up by a carry look-aheadr amiictuit; the alternative method can be sped y@ab
similar logic transformation.

& A more formal definition of two's complement negatnumber (denoted By* in this example) is derived
from the equatioM * = 2" — N, whereN is the corresponding positive number arid the number of bits in the
representation.

For example, to find the 4 bit representation of -5

N = 5,0 thereforeN = 010%
n=4

Hence:
N*=2"-N=2"-5,=1000Q - 010% = 101%
The calculation can be done entirely in base 10yeding to base 2 at the end:

N*=2"-N=2"-5=13,=101%

1.3 Comparison table

The following table compares the representatiothefintegers between positive and negative eigbtusive)
using 4 bits.

4-bit Integer Representations

Decimal Unsigned Sign.and Ones' Two's Ex'cess-7
Magnitude Complement Complement (Biased)

+8 1000 N/A N/A N/A 1111
+7 0111 0111 0111 0111 1110
+6 0110 0110 0110 0110 1101
+5 0101 0101 0101 0101 1100
+4 0100 0100 0100 0100 1011
+3 0011 0011 0011 0011 1010
+2 0010 0010 0010 0010 1001
+1 0001 0001 0001 0001 1000
(+)0 0000 0000 0000 0000 0111
(=)o N/A 1000 1111 N/A N/A
-1 N/A 1001 1110 1111 0110
-2 N/A 1010 1101 1110 0101
-3 N/A 1011 1100 1101 0100
-4 N/A 1100 1011 1100 0011
-5 N/A 1101 1010 1011 0010
-6 N/A 1110 1001 1010 0001
-7 N/A 1111 1000 1001 0000
-8 N/A N/A N/A 1000 N/A

3 Multiplications algorithms

Theory

The product of twan-bit numbers can potentially hava Bits. If the precision of the two two's complement
operands is doubled before the multiplication, diraultiplication (discarding any excess bits beytmat
precision) will provide the correct result. For exae, take 5 x —6 = —30. First, the precision iteaded from
4 bits to 8. Then the numbers are multiplied, didicey the bits beyond 8 (shown by 'x’):

00000101 (5)
x 11111 010 (-6)

xx11100010 (-30)

This is very inefficient; by doubling the precisiahead of time, all additions must be double-preciand at
least twice as many partial products are neededftiradhe more efficient algorithms actually implented in
computers. Some multiplication algorithms are desigfor two's complement, notably Booth's multiglion
algorithm. Methods for multiplying sign-magnitudembers don't work with two's complement numbers
without adaptation. There isn't usually a problehewthe multiplicand (the one being repeatedly ddde
form the product) is negative; the issue is settimgginitial bits of the product correctly when tieltiplier is
negative.

Two methods for adapting algorithms to handle twolsiplement numbers are common:

+ First check to see if the multiplier is negativiesd, negate (i.e., take the two's complement oiffp b
operands before multiplying. The multiplier willeth be positive so the algorithm will work. And snc
both operands are negated, the result will stifehthe correct sign.

« Subtract the partial product resulting from thendigf instead of adding it like the other partiabgucts.

As an example of the second method, take the conadd+and-shift algorithm for multiplication. Insteaf
shifting partial products to the left as is don¢éhwpencil and paper, the accumulated product fseshiight,
into a second register that will eventually hold teast significant half of the product. Since legest
significant bits are not changed once they areutatied, the additions can be single precision, medating in
the register that will eventually hold the mosingiigant half of the product. In the following exate, again
multiplying 5 by -6, the two registers are sepatdig "|":

0101 (5)
x1010 (~6)

0000|0000 (first partial product (rightmost bit i s 0))

0000|0000 (shift right)

0101|0000 (add second partial product (next bit i s 1))

0010|1000 (shift right)

0010|1000 (add third partial product: O so no cha nge)

0001|0100 (shift right)

1100|0100 (subt ract last partial product since it's from sign bit)

1110|0010 (shift right, preserving sign bit, givi ng the final answer, —30)

| mplementations:

Older multiplier architectures employed a shifted accumulator to sum each partial product, oftes martial
product per cycle, trading off speed for die aMadern multiplier architectures use the Baugh-Wgole
algorithm, Wallace trees, or Dadda multipliers dol #he partial products together in a single cythe
performance of the Wallace tree implementatiororaetimes improved by Booth encoding one of the two
multiplicands, which reduces the number of papgralducts that must be summed.

Booth's multiplication algorithm Procedure:
If x is the count of bits of the multiplicand, agpds the count of bits of the multiplier :
* Draw a grid of three lines, each with squédmsx + y + 1 bits. Label the lines respectivelyadd), S
(subtract), and P (product).
* In two's complement notation, fill the firstbits of each line with :
e A: the multiplicand
e S: the negative of the multiplicand
e P: zeroes
* Fill the next y bits of each line with :
e A: zeroes
e S: zeroes
e P: the multiplier
* Fill the last bit of each line with a zero.
* Do both of these steps y times :
1. If the last two bits in the product.are
e 00 or 11: do nothing.
e 01: P =P + A. Ignore any overflow.
e 10: P =P + S. Ignore any overflow.
2. Arithmetically shift the product righhe position.
* Drop the last bit from the product for thedi result.

Example of Booth's multiplication:

Find 3 x -4:

*A =0011 00000
*S =1101 0000 O
*P =0000 11000

* Perform the loop four times :

e P = 0000 1100 0.
e P =0000 0110 O.
e P = 0000 0110 0.
e P = 0000 0011 O.
e P = 0000 0011 O.
e P =1101 0011 O.
e P=11101001 1.
e P=11101001 1.
e P=1111 0100 1.

The last two bits are 00.
A right shift.

The last two bits are 00.
A right shift.

The last two bits are 10.
P=P+S.

A right shift.

The last two bits are 11.
A right shift.

=> The product is 1111 0100, which is -12.

Practical example of implementation in a PIC miordcoller: (I had to use it in a lab for a decimal converkion

; The following codes implement Booth's algorithm f
; It support 8.8 fixed-point format where M is the
; The result will be 16 bits wide.

or two signed 8 bit numbers.
integer and A is fraction.

count EQU 20
M EQU 21 ; Multiplicand
Q EQU 22 ; Multiplier and final result
A EQU 23 ; Remainder
ORG 0 ; initialization code
goto Main
Main ;5.5x2=11(0B)
moviw 5 ; load number for Multiplicand, M=5
movwf M
moviw 2 ; load number for Multiplier
movwf Q
moviw 1 ; A=1, this equals 0.5 in decimal.
movwf A
call Booth_MUL
sleep A=0,Q, =0
M = Multiplicand
Booth_MUL Q = Multiplier
moviw 8 ; number of bits Tt = i
movwf count
movf M,W
xorwf QW ; store the result sign
bthloop movf QW
andlw 0x01
xorwf STATUS,F ; check the pair of bits
btfss STATUS,C
goto arshft
movfw M r
btfsc Q.0 ;ifthe Q_O bitis 1
sub8 subwf AF ; then subtract
btfss Q,0
add8 addwf AF
arshft bcf STATUS,C - - ;
btfsc A7 Arithmetic Shift
bsf STATUS,C Right: A, Q, Q
rrf AF Count = Count — 1
rrf Q.F
decfsz count,F ; check if we are done
goto bthloop
done return No

END

We have also seen a simpler algoritlfstill in PIC assembler)

Clear R_hi
ClearR_lc W

v

> W+= Nz

Increment R_hi

Decrement V1 &
IsZ=C7%

; 8 by 8-bit unsigned multiply routine.
; No checks made for M1 or M2 equal to zero
; R_hi, R_lo = M1 * M2

M1
M2
R _lo
R_hi

Main

MUL8by8

loopl

LIST p=16F877
#include <p16F877.inc>

equ 20
equ 21
equ 22
equ 23
movlw h'9c’
movwf M1
moviw 4
movwf M2
call MUL8by8
sleep
clrf R_hi
clrf R _lo
clrw
addwf M2,W ; add M2 to itself
btfsc STATUS,C ;if carry set
incf R_hi ; increment high byte
decfsz M1
goto loopl
movwf R lo
return

end

R_lo=W

4 Examples of a few multipliers

As required, I'm going to research different muikipimplementations. I'm going to release my resul
chronologically, and with more or less detailsundtion of the multiplier found.

Modified Booth algorithm implementation:

This is one of the most popular techniques to redile number of partial products to be added while

multiplying two numbers. Reduction in number oftgdmproducts depends upon how many bits are retdéle
3-bit recoding (Radix-4) is used the number of iphgtroducts is reduced by half. This is a greatrgain

terms of silicon area and also speed as numbdagés to be added is reduced to half comparedrtoai@add
and shift multiplication.

b1 bo ba
—

A(an, am, coereeennn, 20) Partial Product 0
o ZKo @2 + ot a2+ w)
(8% ... 3%) (Chaz ... C13) $1 Sk
Chy Cly
bab Partial Product 1
2K (a2 + ... + a2 + an)
.l
(S22 ... $%) (G2 ... C) 53| s%
1 [o o)
bs ba b Partial Product 2
- 2K, (an2M + .l + a2 + a)
; | 841 5%
- CH]C
b b B2 Partial Product 15
3 28K s (an2 + L. + 212 + ap)
(S'2 ClBgp) ====m==mo———— (81830 Ci63) !
Final Carry Select Adder (C5A)

Final Product =S+ C

o ¥

Modified Booth algorithm realization
..But the complexity is greatly increased and tlgineement specifications are not completely met.

Bit Parallel Systolic Architecture:

ve.

M Mi

il

Yy

X2 X Ny
Modificd Booth’s recoding algorithm module

X1 Mcand]

Mend2 X1

N {not)

P_P (Partial Product bty

Partial Product bit generator

Ly

F

« M

D I'I x_'-" x.'.ll 1 xm xm x.'! x: x'l
|]
|
Y
N ays |
I\“j ™, T
) S
—— (xp),
T _FJI ™
> L/

This Architecture is one of several versions of Slystolic design, we're going to see later a mooaiate and
closest description, but the concept representeglif@oughly what we are looking for.

Parallel multiplier (4x4 bits):

«[Or =0 @

bl | R LA

(@ Xy
Vavsg
). ey X oy] oL
: vy
va[O > Y XY Y oy 1
0 e e
ADD ADD ADD ADD

[

o

[T

0

[Oom

o @n o

The good point of this multiplier is its easy exgainility.

B any

Eak | EAl o=

This multiplier takes two 4-bit inputs X and Y ageénerates the 8-bit product value P. Each multigkdl uses
a standard AND-gate to calculate the 1-bit proddicts Xi and Yi inputs, and a standard full adtesum the

partial products.

Naturally, it is more space efficient to use aaagular orientation of the cells for an actual VLSI
implementation. Due to the regularity of the stauet it is feasible to generate the layout of sucttipliers
automatically for a given integrated circuit tectogy. While higher speed multipliers are possitie, dense
layout of the multiplier array will often compenegatny speed advantage of more complex circuits$ foorh
standard cells, unless expensive and tedious méayamlt is used for the more complex multipliers.

...Here again, the requirement specifications areaptpletely met, we thus have to continue our rebsa

Serial-Parallel Multiplier

This multiplier is the simplest one, the
multiplication is considered as a succession
additions.

If A= (anan1......8)

And B = (b, by.1......bo)

The product A.B is expressed as: f NEa O rr e LS +
fj"é,—ﬁ“eﬂ“@ z

The structure of this multiplier is suited onl
for positive operands. If the operands &
negative and coded in 2’s-complements:

1. The most significant bit of B has i
negative weight, so a subtraction has
be performed at the last step. F.A. F.A. F.A. F.A.

2. Operand A.2 must be written on 2Ny 2. b
bits, so the most significant bit of / —]) 1 1 1 J-" 3

must be duplicated. It is easier to sh £ A i -
the content of the accumulator to tt
right instead of shifting A to the left. l [|

P p P p p

7 6 > 4 3

An implementation of sequential multipliers using Both algorithm (RADIX):

One of the simplest multiplication algorithms ig thift-and-add algorithm but its performance isrpand can
be improved through more complicated algorithmshsas the Booth algorithm.

Multiplier Muyltiplicand
m=n+x
n l

n
‘ Fath Arbiter ‘

m

CLK Product Reg A Reg Partial Product Reg.

PA Shift Registers
4
2m

m m

1a[jonuosy asuanbag

F2n

Adder Adder

m
m

Product

One of the possible implementations using the Booth algorithm(implemented using the radix-8 Booth algorithm).

In fact, in order to obtain high performance muiégs, several hybrid multipliers which are implemed
through a combination of several algorithms eXst. example, the numbers of partial products ase fi
reduced using the Booth algorithm. Then thesealgtoducts are accumulated through other techsjgieh
as Wallace/Dadda reduction, or carry-save addepeaction. A major drawback of these multipliershatt
they require a large amount of silicon area.

Semi-systolic multiplier:

dj

[Multiplier
L

|
Q (serial in)
LSB-first
f v_
lo F

Multiplicand (parallel in) Xg X1 X5 Xg
2 2 A Epigigiys
1
Sum 1)
FA--H-D-FA A--||>FA--||—>-
Product

Carr;lf—‘!_l I_l_l I_l_l I_l_l (serial out)

The previous graphical description is not completereally mean full; the requirements are now &mo
completely met but we are going to see that the mextiplier corresponds almost exactly to our Reguent
specification, and its description is really mocewrate:

"Multiplicateur séquentiel":

Multiplier Multiplicand clkreset start

Multiplier _Out(0) Multiplicand _Out
7

done

5 Requirement specification:

For this part, maybe quickly treated, please cardige other explanations given later.
Let's see how our component has to be interfacbdve a mean full picture in head:

g)

Resetz........... >
Clk > . . S ’
iy | Systolic multiplier Halt
CEZ >

Official design specifications:

The parallel/serial multiplier has two 8-bit inpatsd four control signals. The output is 16-bit evehd a status
signal 'Halt'. It multiplies two words in 2's corapient format (7-bit plus a sign). The multipliefas digital signal

processing algorithms which require one of the tafga be latched inside the multiplier to be coessd as a
common factor for the multiplication. The multiplieas three phases: initialisation, load both isguid load only
one input. The multiplication based on the extersiga-bit for 2's complement multiplication, i.the sign bits for
the multiplier and multiplicand are extended indigdly as shown in the floor plan. The operationd signals of
the multiplier are as follows:

Clock signal: to synchronise the flow of the operzs.

Chip enable: to enable the chip for operation,tarigolate the output from the global bus, i.e.zGB,
the chip is ready for receiving inputs frora thput buses and sending the output to the obtmjt
if CEz = 1, the chip is disabled and latcHess previous inputs and the results, while the dutpu
register is in the tri-state.

Reset signal: to reset all the flip-flops to theitial values for a new operation. When RS = Qfadi flip-flops are
initialised, and if RS = 1 the multiplier startsrmal operation.

Halt signal: the multiplier generates a halt sigoaindicate that the multiplication is completadd the output
can be collected from the output register, anctkiye is ready for new input(s).

Input mode: to load one input or both inputs.

Inputs: can be loaded in parallel during theah#ation phase.

Details of understanding/l nterpretation for the design specifications:

As said previouslyA andB are 8 bits input<C is a 16 bits output.

The outputC is in high impedance state wh€iz = 1. (Disjunction of the chip to the bus for theput C)
TheResetzsignal has to be sent to (re-)initialize the inedmegisters state (active low signal).

The signalm (Input mode) allows selecting if we want to loadr12 inputs A is not loaded ifm = 0).
The outpuHalt is set @ 1 when the multiplier has completely fied its calculation and is thus ready.

Graphical study of all signals:

Resetz:(1 bit input) Active low.

1

1

1

1
]
'
1

Normal operation, A and B have no

effect on the operation because they\ ~ .~ N Start
aren’t loaded into the chip yet. \ multiplication
The 8 bit binary inputs (A and B) are Reset chip. All
loaded into the chip but A is only registers will
be cleared

loaded if Im = 1.

& Im: (1 bit input)

A is "disconnected" from chip. If we
change its value on the bus, the multiplier
won't consider this modification

CEz: (1 bit input) Active low.

-

With Im=1 and a Resetz
falling edge, the value of A
will be loaded in the chip.

Disconnected from bus

Multiplier output connected to ¥~
main system bus, so that the
answer can be passed on.

 Halt: (1 bit output) ’

. (high impedance state
in output)

Busy- the multiplier is in operation.

BN

*<" Finish: multiplier has finished
adding and shifting and has
filled in the 16 bits of the
answer register C.

4 Verilog description of the selected multiplier

The principle of "shift-add" being chosen, we dnestgoing to design a first version of our mulepliThis is
version is not the Multspec as maybe expected,usecthis HDL description doesn't change a lot: The
difference between the Multspec and architectu@ehis the process of the multiplication; the tepftthe

multiplication technique was too simplified in tNRiltspec version.

This architectural description is almost the fioamponent considering that it's giving what we néed it's

not taking care of the sequential aspect of theoBgsnultiplication.

Verilog code of architectural description:

hudule multarc(C,halt , A,B,Im,resetz,CE};
F/note: as we don't use the clock I took it off.

output [15:8]C;
output halt;
input [7:8] A, B;

input Im, resetz, CE;
regq [15:8] A_req,B_req,C_req,C,mult,sum;

req halt;
integer 1i;

initial begin
A_reg
B reg
C_reg
C = 8;
halt = 1
mult = @
sum = B;

end

always @ {negedge resetz) begin

B reg = 8;
B_reg[7:8] = B;

if (B[7]1) B_reg[15:8]

if (Im) begin
A_req = 83

A_req[7:8] = A;
if {A[7]) A_req[15:8] = B'hff

end
C_reg = B;
halt = B;

end

always @ {(posedge resetz) begin
for (i=8; i<16; i=i+1) beqgin

mult = B req[8] = A_regq;
sum = sum + mult;
C_ req = C_reqg>>1;
C_reg[15] = sum[@];
sum[14:8] = sum[15:1];

B _req[15:1];

B reqg[14:8] =
end
##8 halt = 1;
end

always @ {(CE or C_reg) beqgin

if (*CE) C = C_reg;
else C = 16" hzzzz;
end
endmodule

The sign bit is extended in line 24 for
register B, in line 28 for register A but
only if Im is high (only if the two
multiplicands are required to be
loaded).

& The #0 in line 43 is to force the
affectation of halt to be the last. The
reason that the processor needs to be
told to do this is that the processor is
modelling a concurrent system where
functions are being performed
simultaneously.

The processor however, is a sequential
processor and can only do one thing at
once, so it is required to be told which
calculation/function to do first (or last).

& Lines 47 and 48 detail the action
taken according to the chip enable
signal. If the chip enable signal is high
then the chip is disabled from the bus,
and outputs cannot be taken from an
output of the module (high impedance
state => disconnection from the bus).

The ‘mult’ output is added to the
sum register, a shift register that is
shifted right each time it is added to.
The LSB of the SUM register is shifted
in to the MSB of the C_reg (virtual
output register) which is also shifted
right (16 times until finished). Each
‘mult’ multiplication consists of one bit
of the B_reg LSB multiplied by the
multiplicand in input register A. When
a new multiplication occurs in ‘mult’,
the result is accumulated to the
previous contents of sum register,
C_req is then shifted right by 1, and the
LSB of sum register is input in to the
MSB of the C_reg register; sum register
is then shifted right by 1 and so is the
input multiplier B_reg (which brings
the next significant bit to the LSB to
produce the next partial product). Then
the loop occurs again, and as before
when the loop has finished and the

multiplication result is ready in C_reg virtual rstgr, the value is output
to register C if CE is low or Z if CE is high.

Test of the architectural description:

As this design is just a first overview | just tesgimply:

module test;
reg[7:8] A, B;
req Im,resetz,CE;
wire [15:8] C;
wire halt;

multarc TEST(C,halt , A,B,Im,resetz,CE};

initial beqgin

CE = B8; ffoutput enabled
resetz = 1; /fdisable the reset
Im = 1; ffload 2 inputs

e A = 127,

B = 127;

10 resetz = B8; //enable the reset
1 resetz = 1; /fdisable the reset
wait{halt); Ffwait untill ready
$display{'C = %d",C);

A -127;

B 127 ;

#18 resetz = BA; f/enable the reset
#1 resetz = 1; /fdisable the reset
wait{halt); Afwait untill ready
#10 Sdisplay("'c = %d",C);

end
endmodule

Chronogram of the test result:

As I've got a few problems to read certain madsttdrs | found this solution that allow me to rehd result
without loose myself in all the lines of the resllt do it later anyway, but the least possiljlest once.

=8 Data Analyzer g@@|

Name |va|ue I[ll 1 1 1 1 1 1 1 1 I2I]| 1 1 1 1 1 1 1 1 Iql]l

= Default

halt 511 L L

A[7:0] 81 =< 7i }[g1

B[7:0] 7f =< | 71

CE 5t0 | B R

Im 51

resetz 5t L L

C[15:0] cOff ZZZ7 w301) zeez 4 cbif |]
% >

We can see the result obtained for OX7F x Ox7A2&x 127 = 16129) is Ox3F01 = 16129 as expected.
We can see the result obtained for Ox81 x OX7F12¥ x 127 =-16129) is OXCOFF = -16129 as expected
| chose 127 because it's the maximum value on(8kicomplement representation).

...but the minimum value is obviously -128!

RTL description:

Now we have met a good part of the challenge, we kacomplete the requirement list, the sequeatpkct
being absent in the "Roll call".

Internal components:

loadA
Resetz ====ses o premes > oa
Clk exaenes o AN I » loadB
Im > CNTR » clkB
.............. » clkP
HaltP - » Halt
loadA ===+ > RegA
ﬂ wire| A
loadB eeeees . wire B
Oa(:lkB : b7p|SO — REG_muIt
wirel_@ult
ClKP ==sres- » summ .
wire_S
C_SIPO HaltP

& RegA: (Parallel In, Parallel Out)

Load the 8bits input from the bus

S S T A T A N |

LoadA —

VoY v v vy vy

At loadA rising edge, the input is loaded and thus
becomes available for the next component (REG_mult)

This component is one of the simplest, its Veritoge and tests are thus really straight forward:

I:I_X| a reghtest.v

module regA{wire_A , A luadn),
output [7:8] wire A;
input [7:8] A;
input loadA;
req [7:8] wire_n;

module regAtest;
reg [7:8] A;
req loadf;
wire [7:8] wire_n;

regh test{wire A , A,loadn);

always@{negedge loadA}
wire_ A = A; initial begin

loada = 1;

A = 255;

P #18 loadA = 8;

e M Sdisplay{“wire A = %b",wire A);

endmodule

E | -1 #18loadn = 1;
-7 - A = B;

18 nets total: 26 saved and @ munlturedf P 18 loadn = B;

81 registers total: 81 saved. e 7.-""
Done. o |- #1 Sdisplay(wire_A = %b",wire_n);
e e #18 S$finish;
B State changes on uhseruahle nets -7 end
e soy endmodule|

Simulation stupped’at theuend uF time B.
Ready: sim o
uire n = 111111114 .-
wire A - 000000004~
$finish in file "C:\Documents and Settings\DRIX05\Bureauimicroelec tmp\FINAL\Regniregatest.v" at line 19

L4 State changes on observable nets.

Simulation stopped at the end of time 42.
Ready:

2

As expected, the value in input is correctly copredutput.

& b pisa (Parallel In, Serial Out)

Load the 8bits input from the bus
LSB is released

U N
LoadE — |, sequentially to
clkkB — REG_mult

Here the sequence is: 1) input has to be ready
2) send signal LoadB
3) run clkB so that the 8 bit word gets shifted oluthe register serially

module b_piso{wire B, B,loadB,clkB);
output wire_B;
reg wire B;
input [¥:8] B;
input loadB, clkB;
reg [¥:8] B_req;

always@{negedge loadB) begin
B_req = B;
wire B = B _req[8];

end

B _reg[6:8] = B_reg[7:1
Twire B =B _reg[B]; X
end
endmodule

AEE

module b _piso_ test;
wire wire_B;
req clkB;
req loadB;
req [7:8]8;

b_piso test{wire B, B,loadB,clkB);
always #% clkB=""clkB;

initial begin
clkB=8;
loadB=1;
B=9;
B=8"h80;
#1 loadB=9;
#1 loadB=1;
#88 ifinish;

end

endmodule

As we can see, the MSB is not affected by the gihiftess but it's propagated on the lower sigmfitats.

28 Data Analyzer

Name | Value

= Default

clkB 5t0 | |

loadB 5t

B[7:0] 80

B_reg[7:0] 80 el

fe H

B reg[7] 5t

B reg[6] St0 |

B reg[b]
B reg[d]

5t0
5t0

B reg[3] 5t0

B reg[2] St0

B reg[l] St0

B reg[0] St0

wire_B 5t0

clkB St0 |

L///T

[|]
N ’
— .
| |/|

loadB st [

£

/ ,

/

As expected, the internal register called B_reglsenMSB to the output (wire_B). We can also seedhift

process of the internal register B_reg.

| chose the value 0x80 on purpose: in binary @8010000 and if we shift it right 8 times, the M88comes
the LSB then we see the 1 in output whereas wéhadhe previous states.

& REG mult: (combinatorial component)

Each bit coming from b_piso is pushed in "wire_Btlas multiplied (logical "and") by each of the &shof
wire_A to produce an 8 bit value in the wire_multput:

module REG_ mult{wire mult, wire A, wire B);
output [7:8] wire_mult;
input [7:8] wire A;
input wire B;
reg [7:8] wire _mult;

...............................

wire B wire_ A
B
B
wire mult

endmodule

wire mult = wirE_vi wire f;

\

Note: we can see that this component is combiratbeicause all the inputs are in the sensitivaty li

..... —
Bl R || o5 BE

module REG_mult_test;
wire [7:8]wire_mult;
req [7:8]wire f;
req wire B;

REG mult inst{wire mult , wire A,wire B);

initial begin

wire A = 4;
wire B = 1;
#18 wire A = 6;

wire B = @;

#10 wire A =
wire B = 1;
#18 $finish;

255;

end
endmodule

S=1e3

=2 Data Analyzer

Name | Value o ..., . 8
E Default
wire A[7:0] ff 04 06y | &
wire B 5t1 T I
v N M
wire_mult[7:0] ff 04 j_ oo j | ff
< -

We can see that the 8bits of wire_A are
correctly multiplied by the bit of wire_B.

=> wire_mult is equal to O if wire_B =0
and equal to wire_A if wire_ B = 1.

Note: The name of this component shouldn't be REG because it's nothing to do with a registemihen |
wrote it | didn't really think about it and | nevananged it; anyway, it's just a name...

4 summ

In the beginning, | designed a simple module fergbhm that was working alone, but when | have msteed

the final multiplier, it didn't work and | found @hthe problem was from this component:

module summ{wire S , wire_mult,clkP,Resetz);
output wire 5;
req wire_S,carry;

reqg [7:8]s5um;

input clkP,Resetz;
input [7:8]wire mult;

always @ {negedge Resetz) begin
sum=8;
wire S5=8;
carry=8;

end

always @ {posedge clkP) if (Resetz)begin
fFf ADD PROGESS:

sum[7]=carry;

{carry,sum} = sum + wire mult;

F/SHIFT PROCESS
wire § = sum[8];
sum[6:8] = sum[7:1];
end

endmodule

| never found the problem then | decided to stgaimand | used a gate level description that likipe to

design a new sum module using this principle:

| V] | ¥ |

v

i

FA] FA {1 Fa [0

FA

FA |

FA

ouT

=> | thus implement it with a full adder block (8lks for the 8 bits) where the carry out is fedkmcthe carry
in at the next clock pulse. This is an implicit wayripple it quickly and efficiently. Here is tlzeld block cell:

(=19
module adder block{So , mult,S5i,Resetz,clkP};
output 3o;

input mult, 5i, Resetz, clkP;
req carry, So;

always@({negedge Resetz) begin

g:r:y; a; The sum of three 1 bit values can

end need to be represented on 2 bits.

always@({posedge clkP) if(Resetz) The curly brackets allow to
{carry, S0} = 51 + mult + carry; concatenate the carry and So
T (making carry as the MSB)

EEX

odule adder_block_test;
req mult, Si, Resetz, clkP;
wire So;
adder_block TST({So, mult, Si, Resetz, clkP);
initial begin
Smonitor{$time, " {carry=%b,S0=%b} = mult=%b + Si=%h + carry=%b ‘n",
adder_blocKk.carry,5o, mult, Si,adder_block.carry);
clkPF = B;
Si = @;
mult = B;
Resetz = 8; ffcreate negedge
#1 Resetz = 1; F/and disable reset
51 = 1;
mult = 1;
#38 $finish;
end
always #5 clkP = ™clkP;
endmodule

As expected, The 2 first lines show that 1+1+0 £icdMinary)...

* Qutput E@

Simulation stopped at the end of time 8. A
Ready: sim
1 {carry=8,50=08}

mult=1 + Si=1 + carry=0

L {carry=1,50=08}

15 {carrTERFENER]}

mult=1 + Si=1 + carry=1

mult=1 + S$i=1 + carry=1

...and the 2 last lines show that 1+1+flk(in binary again).

=> Then the functionality is correct.

...and here is the module that instantiate 8 timeduM adder cell:

module summ{wire S , mult,Resetz,clkP);
output wire §;
input [7:8]mult;
input Resetz, clkP;
wire [6:8]5_int;

adder_block IHSTA{wire 5, mult[@], S int[8],
adder_block INSTA{S_int[®], mult[1], S_int[1],
adder_block INST2({S_int[1], mult[2], S_int[2],
adder_block IHST3{S int[2], mult[3], S _int[3],
adder_block INST&{S int[3], mult[4], S_int[4],
adder_block INSTS{S int[4], mult[5], S_int[5],
adder_block INST&(S_int[5], mult[6], S_int[6],

adder_block INST7(S_int[6], mult[7], {S_int[6],

\

endmodule f

Resetz,
Resetz,
Resetz,
Resetz,
Resetz,
Resetz,
Resetz,
Resetz,

clkP3);
clkP);
clkP);
clkP);
clkP);
clkP);
clkP);
clkP);

feed back of the signlbit

module summ_test;
wire wire_ 35;
req [7:8]mult;
req resz ,Resetz,clkP;
summ test{wire 5 , mult,Resetz,clkP);

initial begin

Ymonitor{$time, ™ S _int=%b%b “n", summ.5_int,wire S);

clkP=8;
mult=4;
Resetz=0;
#1Resetz=1;

#65 4finish;
end

always #5 clkP="clkP;

endmodule

A —

(Here we can see a strange
way of displaying the
result. I've virtually
"concatenated" the 7
internal wires called
S_int and the output
wire_S (being the MSB)
to be able to see what is

the value of the
\accumulation result.

In the internal register called "S_int" we obthglf of the sum of the input "mult" and the previouS 'int ".
=>Half because of thghift action (which gives the entire part of the divislwy 2 to be more accurate).
We thus obtain as expected:

|4'\

Ready: sim

9(=1[E
8 5 _int=A000000A ”~

Simulation stopped at the end of ti -

= 100 |
8 State changes on observable nets. ////////////
SHIFT => 010

+100

, . — || SHIFT =>011
15 5_1nt=008086118

........ —

........ —

| >

+
N O

SHIFT =>4/2 =
+

SHIFT =>6/2

. |+ 1 | |

& C SIPO: (Serial In, Parallel Out)

clkP Resetz CEz

|

wire S C_SIPO Halt

Jel

This shift register allows implementing the highpedance state when the multiplier is busy, it alkmwvs
resetting with the MSB at 1 (it's the marker thdt @ount the 16 clock edges to raise the halt aigrhen the
multiplication is finished) and finally it contairtee halt memory cell.

A

B[=1Ey

module C_SIPO({C,HaltP , wire_5,Resetz,CEz,clkP);
output [15:6]C;
output HaltP;
input wire 5, clkP, Resetz, CEz;
req [15:8] G, regC;
req HaltP;

initial begin
regC = B3
C = 8;
HaltPF = B;
end

always@{negedge Resetz) begin
regC = 16'h88086;
HaltP = 8;

end

always@{posedge clkP)
if{Resetz) begin
reqt = regC>:1;
#1 regC[15] = wire §;
HaltP = regC[d];
end

always@{CEz or regC)
begin if{*CEz)

C = regC;
else

C = 16"hzzzz;
end

endmodule

module C_SIP0_test;
req clkP,CEz ,Resetz,wire 5;
wire [15:8]C;
wire HaltP;

always #5 clkP="clkP; // clock generator {period of 18 time units)

// instantiation of C_SIPO:
C_SIPD test{C,HaltP , wire S,Resetz,CEz,clkP);

initial begin

clkP=8;

wire 5=8;

Resetz=8; f/ Resetz negedge

#1 Resetz=1; /f Resetz disabled

wire S=1;

#18 wire S=0; /4 inject 1 after the "marker” in MSB
#1480 vwire_S=1; /4 result should be h* 8863

#2@84finish; £ stop at 16 clkP periods.

end

always @ {HaltP) begin
if (HaltP) CEz =
else CEz = 1;

g; /# output enabled,
// other wise output disabled

end

always @ {posedge clkP) if (HaltP} begin

Resetz = 0; ff reset, but...

#1 Resetz=1; £f ...just a pulse.
end
endmodule

To test if this component shifts correctly, | injed (just after the marker in the MSB of regC) iniftput.

The result is simple to expect:

1-> 1000 0000 0000 0000
1100 0000 0000 0000
0110 0000 0000 0000
0011 0000 0000 0000

0000 0000 0000 aa

2 Data Analyzer

AFTER 1 SHIFT
AFTER 2 SHIFTS
AFTER 3 SHIFTS...

= RESULT EXPECTED (=0x0003)

Name | Value ||] 1 1 1 1 1 1 1 1 1 I3I]I 1 1 1 1 1 1 1 1 IEI]I 1 1 1 1 1 1 1 1 Igl]l 1 1 1 1 1 1 1 1 |1 2II:II 1 1 1 1 1 1 1 |1 5II:II 1 1 1 1
= Default
CEz St0 LI
Resetz Stl | f 1
clkP St0 - < -+ 1+ 11>’ 113> 1
wire_S St1 1]
regC[... 0003 8000 i c000 7 6000 7 3000 j 1800 ;§ OcOO ; 0600 4 0300 ; 0180 ; 00cO 4 0060 4 0030 4 0018 4 000c » 0006 4 00P3 4 8000
C[15:0] 0003 .. ZZZZ 083} zz=zz
HaltP St T “T 1

~
-
£ RS -

S~ -

The initialisation is correctly made with then MSB (:[Ffe‘ marker) that giveé?’

0b1000 0000 0000 0000 = 8R00

The output is effectively in high impedance statew CEz =1.

And finally, the result expected (0x0003) is obéain

& CNTR: (control module)

The main purpose of CNTR is to logically genethtesignals that are needed to control the modiles
the system and maintain synchronicity. This compong thus mainly combinatorial, but we need toaglel
(synchronously) the HaltP (Provisional) signal thieis part is sequential.

There are two clock signals required in the sysiem@low for propagation of the multiplication integister C
before the next shifting of register B. TherefolieBcis set equal to the negated clock input. Thedlsignals
are following Resetz but loadA is only set whenisnalso high (when both multiplicands are required)

The Resetz and CEz signals are unchanged then't thile care of them (but | need Resetz to loah@dB).
The clkP is set so as to be inhibited when Ha#teishigh (this is the clock that makes the regi€&temnd the
summ’s shift). This is to stop the register C shgftthe values out when the multiplication is coetpland the
full result is in register C. So clkP is assigngd-blalt & clk.

....... 'S loadA
Resetz =====es >
Clk seeenns »$ AN, I > loadB
Im ’ C NTR ------- ’ ClkB
------- »
------- ’
HaItP ------- >

Halt is reset to zero when the reset signal goeq$ystem reset) and at the positive edge of tkie,the Halt
signal output from the module is passed to a Mirtagister halt_tmp, then in the negative edge Gf #he
halt_tmp value is passed to the Halt output froen riiodule (which is the real multiplier putput Halthis
creates a delay of one clkP cycle in the propagaifdhe signal HaltP to Halt. Therefore when thatP signal
is set high as the LSB of the register C is 1,dhemnother shift of register C before the hajhal propagates
through the CNTR module and the clkP is inhibitddother reason for inverting clkP is to not looke first
bit of regB, which would be shifted out and losthé reset signal went low then high before falleuge of the
clkP, as the ‘mult’ module would not be ready togige it.

module CHTR{loadA, loadB, clkP, Halt, clkB, //foutputs
Im, clk, Resetz, HaltP); ffinputs

output loadaA, loadB, clkP, Halt, clkB;
input clk, Resetz, Im, HaltP;
reg Halt, halt_tmp;

initial begin
Halt = B;
halt_tmp = 8;
end

always @ {negedge Resetz) Halt = @;
always @ {posedge clkP) halt_tmp = HaltP;
always @ {(negedge clkP) Halt = halt_tmp;

assign loadd = Resetz & Im,
loadB = Resetz,
clkP ~Halt & clk,
clkB ~clk;

endmodule

module CHTRtest;
wire loadd, loadB, clkP, Halt, clkB;
reg Im, clk, Resetz, HaltP;

CHTR test(loada, loadB, clkP, Halt, clkB, /foutputs

Im, clk, Resetz, HaltP);

initial begin
clk = B;
Resetz =
Im = 1;
HaltPF = 8;
6 Resetz
#? Im = B;
#6 Resetz
#3 Recetz
#2 HaltP = 1;
#21 $finish;

1;

a;
1;
end

always #5 clk = ~clk;

endmodul e

ffinputs

In the following chronogram, the inputs names aghlighted to be able to distinguish them easily.

=2 Data Analyzer

FEXE

Name |value/0 20 & A0
El Default | I

aie I = i

Halt St0 i l—.l—"

kP StD 11 1 >

clk | St0 1 1 L

clkB St | | | | | | | | |

Im | St |

loadA 5t0 1

Resetz iU I NN L1

loadB 5t0 LI

£ |®

. The HaltP input signal is st
high at time33, and we can !
see that the Halt signal only
goes high at timd0, the :

' synchronisation is thus goqd.

~

The clkP signal is correctly
inhibited by Halt and
follows the clk as expected,;
the clkB is ~clk => OK.

As we can see, the loadA and
loadB are risen by Resetz but
Im inhibits loadA.

I nstantiation of all the components:

module Systolic multiplier(C,Halt , A,B,Im,Resetz,CEz,clk};
input Im, clk, CEz, Resetz;
input [7:8] A, B;
output [15:8] C;
output Halt;
wire loadA, loadB, clkP, clkB, HaltP, wire B, So;
wire [7:8] wire_A, wire_mult;

CHTR insti1(loadf,loadB,clkP, Halt,clkB, J/ outputs
Im,clk,Resetz HaltP); /¢ dinputs

regfi inst2{wire A , A,loadA);

b _piso inst3{wire B , B,loadB,clkB);

REG_ mult insti{wire mult , wire A,wire B);
summ inst5(30 , wire_mult,Resetz,clkP};
C_SIPD inst6({C,HaltP , So,Resetz,CEz,clkP);

endmodule

block diagram{instantiation of all the components using Altbtax+plus®)

: rega
loads
- LOADA WIRE _ALCSE. .11
—ErE. . 1]
PR PRE:
b_piso reg_mult
loadE - BLE. .11 E - WIRE_ALS. .11 WIRE_MULTLS..11
oa : : :
———LORADE WIRE _E WIRE _E
clkB
CLEE BE
A
SLUmm
WIRE _MULTLCS. .1]
clkP
———— | GCLKF
Resetz :
————|RESETZ
BB
Cc_sipo :
I— wIRE_= :
CEz . HaltP
CEZ HALTP[————

ckp ! : e
CLK CCi&. . 1) I._

CI16. 1]

Rezets

Test file: (this first test file is simplified to be able méwring the output in the result text file, see ngage)
""" - BX]
module Systolic_multiplier_ test; ~

req [7:8] A, B;
reg Im,Resetz,CEz,clk;

wire [15:8] C;
wire Halt;

Systolic_multiplier inst{C, Halt, A, B, Im, Resetz, CEz, clk);

initial begin
Smonitor(4$time, "™ clk = %b, C = %b, Halt = %b", clk, C, Halt);

clk = B;

Im = 1;

CEz = 8;
Resetz = 1;

A= -127;
B = -127; /f result expected @ 3F81
#1 Resetz
#1 Resetz
wait{Halt)

LI |
—
.

Im = @;

B = 127; /7 result expected : CHFF
#11 Resetz
#1 Resetz
wait{Halt);

nu
—
.

Im = 1;
A = 127,
B = -127; ff result expected : CBFF
##1 Resetz =
#1 Resetz = 1;
wait{Halt);

Im = 8;

B = 127; ff result expected : 3F81
#1 Hesetz
#11 Resetz = 1;
wait(Halt);

#38 $finish;
end

always #5 clk = ~clk;

endmodule

=4

Description of the results:;

clk = 0, C = 1000000000000000, Halt = 0 321 clk = 0, C = 1000000000000000, Halt = 0
clk =1, C = 0100000000000000, Halt = 0 325 clk =1, C = 0100000000000000, Halt = 0
clk =1, C = 1100000000000000, Halt = 0O 326 clk = 1, C = 1100000000000000, Halt =0
clk = 0, C = 1100000000000000, Halt = 0O 330 clk = 0, C = 1100000000000000, Halt =0
clk =1, C = 0110000000000000, Halt = 0 335 clk =1, C = 0110000000000000, Halt = 0
clk = 0, C = 0110000000000000, Halt = 0 336 clk =1, C = 1110000000000000, Halt = 0
clk =1, C = 0011000000000000, Halt = 0 340 clk = 0, C = 1110000000000000, Halt =0
clk = 0, C= 0011000000000000, Halt = 0O 345 clk = 1, C = 0111000000000000, Halt =0
clk =1, C = 0001100000000000, Halt = 0 346 clk =1, C = 1111000000000000, Halt = 0O
clk = 0, C=0001100000000000, Halt = 0 350 clk = 0, C = 1111000000000000, Halt = 0
clk =1, C = 0000110000000000, Halt = 0 355 clk = 1, C = 0111100000000000, Halt =0
clk = 0, C = 0000110000000000, Halt = 0O 356 clk = 1, C = 1111100000000000, Halt =0
clk =1, C = 0000011000000000, Halt = 0 360 clk = 0, C = 1111100000000000, Halt = 0O
clk = 0, C = 0000011000000000, Halt = 0 365 clk =1, C = 0111110000000000, Halt = 0O
clk =1, C = 0000001100000000, Halt = 0O 366 clk = 1, C = 1111110000000000, Halt =0
clk = 0, C = 0000001100000000, Halt = 0O 370 clk = 0, C = 1111110000000000, Halt =0
clk =1, C = 0000000110000000, Halt = 0O 375 clk =1, C = 0111111000000000, Halt = 0O
clk = 0, C = 0000000110000000, Halt = 0 376 clk =1, C = 1111111000000000, Halt = 0O
clk =1, C = 0000000011000000, Halt = 0O 380 clk = 0, C=1111111000000000, Halt =0
clk =1, C = 1000000011000000, Halt = 0O 385 clk = 1, C = 0111111100000000, Halt =0
clk = 0, C=1000000011000000, Halt = 0 386 clk =1, C = 1111111100000000, Halt = 0
clk =1, C = 0100000001100000, Halt = 0 390 clk = 0, C=1111111100000000, Halt = 0O
clk =1, C = 1100000001100000, Halt = 0 395 clk =1, C = 0111111110000000, Halt = 0O
clk = 0, C=1100000001100000, Halt = 0O 396 clk = 1, C = 1111111110000000, Halt = 0
clk =1, C = 0110000000110000, Halt = 0 400 clk = 0, C=1111111110000000, Halt = 0O
clk =1, C = 1110000000110000, Halt = 0 405 clk =1, C = 0111111111000000, Halt = 0
clk = 0, C=1110000000110000, Halt = 0 410 clk = 0, C = 0111111111000000, Halt = 0
clk =1, C=0111000000011000, Halt = 0O 415 clk =1, C = 0011111111100000, Halt = 0O
clk =1, C=1111000000011000, Halt = 0O 420 clk = 0, C = 0011111111100000, Halt = 0O
clk = 0, C=1111000000011000, Halt = 0O 425 clk =1, C = 0001111111110000, Halt = 0
clk =1, C = 0111100000001100, Halt = 0 430 clk = 0, C = 0001111111110000, Halt = 0
clk =1, C=1111100000001100, Halt = 0O 435 clk =1, C = 0000111111111000, Halt = 0O
clk = 0, C=1111100000001100, Halt = 0O 440 clk = 0, C = 0000111111111000, Halt = 0O
clk =1, C=0111110000000110, Halt = 0 445 clk = 1, C = 0000011111111100, Halt = 0
clk =1, C=1111110000000110, Halt = 0 450 clk = 0, C = 0000011111111100, Halt = 0
clk =0, C=1111110000000110, Halt = 0O 455 clk = 1, C = 0000001111111110, Halt = 0
clk =1, C=0111111000000011, Halt = O 460 clk = 0, C = 0000001111111110, Halt =0
clk = 0, C=0111111000000011, Halt = 0 465 clk = 1, C = 0000000111111111, Halt = 0
clk =1, C=0011111100000001, Halt = 0O 466 clk = 1, C = 1000000111111111, Halt = 0
clk =0, C=0011111100000001, Halt = 1 => 30F1 470 clk = 0, C = 1000000111111111, Halt = O
clk = 0, C = 1000000000000000, Halt = 0O 475 clk = 1, C = 0100000011111111, Halt = O
clk =1, C = 0100000000000000, Halt = 0 476 clk = 1, C = 1100000011111111, Halt = 0
clk =1, C = 1100000000000000, Halt = 0 480 clk = 0, C = 1100000011111111, Halt = 1 => COFF
clk = 0, C = 1100000000000000, Halt = 0O 481 clk = 0, C = 1000000000000000, Halt = 0O
clk =1, C = 0110000000000000, Halt = 0O 485 clk = 1, C = 0100000000000000, Halt = 0O
clk =1, C = 1110000000000000, Halt = 0O 486 clk = 1, C = 1100000000000000, Halt = 0O
clk = 0, C=1110000000000000, Halt = 0 490 clk = 0, C = 1100000000000000, Halt = 0
clk =1, C = 0111000000000000, Halt = 0 495 clk = 1, C = 0110000000000000, Halt = 0
clk =1, C=1111000000000000, Halt = 0O 500 clk = 0, C = 0110000000000000, Halt =0
clk = 0, C=1111000000000000, Halt = 0O 505 clk = 1, C = 0011000000000000, Halt =0
clk =1, C = 0111100000000000, Halt = 0 510 clk = 0, C = 0011000000000000, Halt = 0
clk =1, C=1111100000000000, Halt = 0 515 clk = 1, C = 0001100000000000, Halt = 0O
clk = 0, C=1111100000000000, Halt = 0O 520 clk = 0, C = 0001100000000000, Halt =0
clk =1, C=0111110000000000, Halt = 0O 525 clk = 1, C = 0000110000000000, Halt =0
clk =1, C=1111110000000000, Halt = 0 530 clk = 0, C = 0000110000000000, Halt = 0
clk = 0, C=1111110000000000, Halt = 0 535 clk = 1, C = 0000011000000000, Halt = 0
clk =1, C=0111111000000000, Halt = 0O 540 clk = 0, C = 0000011000000000, Halt =0
clk =1, C=1111111000000000, Halt = 0O 545 clk = 1, C = 0000001100000000, Halt =0
clk = 0, C=1111111000000000, Halt = 0O 550 clk = 0, C = 0000001100000000, Halt = 0O
clk =1, C=0111111100000000, Halt = 0O 555 clk = 1, C = 0000000110000000, Halt = 0O
clk =1, C=1111111100000000, Halt = 0O 560 clk = 0, C = 0000000110000000, Halt =0
clk =0, C=1111111100000000, Halt = 0O 565 clk = 1, C = 0000000011000000, Halt =0
clk =1, C=0111111110000000, Halt = 0O 566 clk = 1, C = 1000000011000000, Halt = 0
clk =1, C=1111111110000000, Halt = 0O 570 clk = 0, C = 1000000011000000, Halt = 0
clk =0, C=1111111110000000, Halt = 0O 575 clk = 1, C = 0100000001100000, Halt =0
clk =1, C=0111111111000000, Halt = 0O 576 clk = 1, C = 1100000001100000, Halt =0
clk = 0, C=0111111111000000, Halt = 0 580 clk = 0, C = 1100000001100000, Halt = 0
clk =1, C=0011111111100000, Halt = 0O 585 clk = 1, C = 0110000000110000, Halt = 0
clk =0, C=0011111111100000, Halt = 0O 586 clk = 1, C = 1110000000110000, Halt =0
clk =1, C=0001111111110000, Halt = 0O 590 clk = 0, C = 1110000000110000, Halt =0
clk =0, C=0001111111110000, Halt = 0O 595 clk = 1, C = 0111000000011000, Halt =0
clk =1, C=0000111111111000, Halt = 0 596 clk = 1, C = 1111000000011000, Halt = 0
clk = 0, C=0000111111111000, Halt = 0 600 clk = 0, C = 1111000000011000, Halt = 0
clk =1, C=0000011111111100, Halt = 0 605 clk = 1, C = 0111100000001100, Halt =0
clk = 0, C=0000011111111100, Halt = 0 606 clk = 1, C = 1111100000001100, Halt =0
clk =1, C=0000001111111110, Halt =0 610 clk = 0, C = 1111100000001100, Halt = 0
clk = 0, C=0000001111111110, Halt =0 615 clk = 1, C = 0111110000000110, Halt = 0
clk =1, C = 0000000111111111, Halt = O 616 clk = 1, C = 1111110000000110, Halt =0
clk =1, C=1000000111111111, Halt = O 620 clk = 0, C = 1111110000000110, Halt =0
clk = 0, C=1000000111111111, Halt =0 625 clk = 1, C = 0111111000000011, Halt = 0O
clk =1, C = 0100000011111111, Halt =0 630 clk = 0, C = 0111111000000011, Halt = 0
clk =1, C=1100000011111111, Halt = 0 635 clk = 1, C = 0011111100000001, Halt = 0 => 30F1
clk = 0, C=1100000011111111, Halt = 1 => QOFF

For the previous result text file | thus fully etedbthe chip output (no state Z) to be able toitseevolution.
But as the multiplier is supposed to disable itpouwhen the result is not ready, | changed & litte test file
to implement this functionality (by setting CEzlaivhen the device is busy, which places C in a high
impedance state).

""" B[=1E3

module Systolic_multiplier_test;
vreq [7:8] A, B;
req Im,Resetz, CEz,clk;

wire [15:8] C;
wire Halt;

Systolic multiplier inst{C, Halt, A, B, Im, Resetz, CEz, clk);

initial begin
Smonitor($time, ™ clk = %b, € = %b, Halt = %b™, clk, ©, Halt);

B = -127; fFf result expected : 3F@1
#1 Resetz = 8;

#1 Resetz = 1;

@{Halt} CEz = 8;

#9 CEz = 1;

Im = B;

B = 127; ff result expected : CBFF
#1 Resetz a
#1 Rescetz = 1
@{Halt} CEz =
#? CEz = 1;

Im = 1;

A = 127;

B = -127; ff result expected : CBFF
#1 Rescetz =
#1 Resetz =
@{Halt}) CEz
#9 CEz = 1;

I = =

Im = B;

B = 127; fFf result expected : 3F@1
#1 Resetz a;

#1 Resetz = 1;

Ffuait(Halt);
@{Halt) CEz = B;
#9 4Finisch;

end

always #% clk = ™clk;

endmodule W

Chronogram result for¥Imultiplication: -127 x -127 = 16129 (= 0x81 x 0x8Dx3F01)

2 Data Analyzer

Name Valwe [T F0
El Default
A[7:0] 81 81
B[7:0] 81 81 it
Halt 5t [L
clk 51 1 1 I I 1 1 I 1 I
Resetz 5t L
wire_A[7:0] 81 81
wire_B 5t |
wire_mult[7:0] 81 [IT1] i 81
wire_S 5t0 f 1 I
regC[15:0] 310 0600 0300 0180 80cD c060_j} _e030 4 f018 4y fobc_j4 fcO6_j_ 7e03 3f01 []
C[15:0] 3101 2zz22 |\}{ 301 [zzz=
< >

Chronogram result for"2 multiplication: -127 x 127 = -16129 (= 0x81 x 0xZPXxCOFF)

2N Data Analyzer

Name | value e
E Default
A[7:0] 81 81 I 7f
B[7:0] 7t i 1 81
Halt st |
clk 5t |] I] I 1 I] f 1
Resetz 511 L
wire_A[7:0] 81 81 i 7t
wire_B 5t 1 -
wire_mult[7:0] 00 81 00 L
wire_S S5t] f L T
regC[15:0] clff i fi00__ 5y 80§ FicD 5 3fed 110 0ff6) O7fc__ 4 D3te 44 BIfF)4 cOff W cooo
C[15:0] cOff zz22 v cOff[z2zzz
< >

Chronogram result for'8multiplication: 127 x -127 = -16129 (= 0X7F x 0x8 DxCOFF)

&N Data Analyzer

Name | value N L P . - T ... D L P ..
B Default
A[7:0] 7t 7i
B[7:0] 81 81 " it
Halt 511 | R
clk 511 1 1 1 [1 1 [1 |
Resetz 5t1 L
wire A[T:0] 7 7i
wire_B 5t1 |
wire_mult[7:0] 7f oo ¥ 7t
wire_S st 1 f I
regC[15:0] cOf [feDO ¥y fOD Yy W80 Y 7icd Y 3fe0) TH0) OFB) OFffc) O03fe) BIF i cOf | ¥ 1
C[15:0] cOff 7777 W cOff \}{‘, 277z
< T 5

Chronogram result for%multiplication: 127 x 127 = 16129 (=0x7F x 0x7Px3F01)

2 Data Analyzer

Name | . L - T = - T
B Default

A[7:0] 7f 7f

B[7:0] 7f 7f

Halt st I
clk 5t I 1 1 f 1 f 1 e
Resetz 5t

wire_A[7:0] 7f 7f

wire_B St0 1

wire_mult[7:0] 00 7f I [IT1]

wire_5 St0 f 1

regC[15:0] 3f01 0cO0 j 0600 3 0300 § 0180 iy 80c0 i cOG0 ¥ e030 i f018 ji f80c ;) fcO6 7eO3 301
C[15:0] | 3f01 zzzz A3t),

< “onE

BONUS : I wanted to test the multiplier a little more, thare done a simulation of the Verilog code in
Max+plus. As this software is not working exacikel Silos, | changed some of the codes:
(the main difference is that the "initial" functisnot really appreciated by Max+plus)

B rega.v - Text Editor

odule regA{wire_fA , A,loadA); =«
output [7:8] wire h;
input [7:08] A;
input loadn;
req [7:8] wire_A;

dlways@{negedge loadf)
wire A = A;

endmodul e
Line 1 Col 1 INS | 4 3

E b_piso.v - Text Editor
odule b_piso{wire_B, B,loadB,clkB); =
output wire B;
reg wire_B;
input [7:8] B;
input loadB, clkB;
reg [7:8] B_reqg;

always@{posedge clkB})
if{™loadB) begin
B req = B;
wire_B = B_reg[8];
end
else begin
B req[6:8] = B_reg[7:1];
wire_B = B_reg[8];

end
endmodule -
Line 1 __[Col 1 [INS]«| | v[]

ﬁ reg_mult.v - Text Editor E|E|E|

module REG_mult{wire_mult, wire_A, wire_B); «
output [7:8] wire_mult;
input [7:8] wire A;
input wire B;
reg [7:8] wire mult;

always B {wire B or wire_ A)
wire mult = wire B = wire A;

endmodule
Line 1 Col 1 INS|«| | A

S=1eg

E adder_block.v - Text Editor

odule adder block{So , mult,Si,Resetz,clkP); ||
output 3o;
input mult, Si, Resetz, clkP;
reg carry, 5o;

always@{posedge
if{(™~Resetz)
carry =

clkP})
begin
8;

S0 a;
end
else if{Resetz)
{carry, So} = Si + mult + carry;
endmodule

[Line 1 [Col 1 [INS]« |

E summ.v - Text Editor
module summ{wire S , mult,Resetz,clkP);
output wire §;
input [7:8]mult;
input Resetz, clkP;
wire [6:8]5 _int;

adder_block
adder_block
adder_block
adder_block
adder_block
adder_block
adder_block
adder_block

IHSTB{wire_5,

INSTA(S_int[0],
INST2(S_int[1],
INST3(S_int[2],
INSTA(S_int[3],
INSTS({S_int[4],
INST6(S_int[5],
INSTZ(S_int[6],

mult[aj,
mult[1],
mult[2],
mult[3],
mult[4],
mult[5],
mult[6],
mult[7],

S _int[e],
S int[1],
s_int[2],
s_int[3],
S _int[u],
S int[5],
s_int[6],
S _int[6],

Resetz,
Resetz,
Resetz,
Resetz,
Resetz,
Resetz,
Resetz,
Resetz,

endmodule

Line 1 Col 1 INS |« |

c1kP)
c1kP)
c1KP)
c1kP)
c1kP)
c1kP)
c1KP)
c1kP)

[

& c_sipo.v - Text Editor ['._|['E|[‘S__<|
odule C_SIPO{C , HaltP,wiFE_S,HESEtZ,EEZ,ElkP};_1
output [15:8]C;
output HaltP;
input wire_ S, clkP, Resetz, CEz;
req [15:8] C, regqC;
reg HaltP;

always@{posedge clkP})

if (™~Resetz) begin
regt = 16'h280040;
HaltP = 8;

end

else begin
regt = reqC>>1;
#1 regC[15] = wire_S;
HaltP = reqC[A];

end

always@B{CEz or reqC) begin

if(*CEZ)
C = regC;
else
C = 16"hzzzz;
end -
Line 1 Col 1 INS | 4 »
E® cntr.v - Text Editor [ZI[EI[‘S_?I
module CHTR{loada, loadB, clkP, Halt, clkB, /foutputs
Im, clk, Resetz, HaltP); Jfinputs

£/ no more cez * ¢ ¢
output loadA, loadB, clkP, Halt, clkB;
input clk, Resetz, Im, HaltP;
reg Halt, halt _tmp;

assign loadA = Resetz & Im,
loadB = Resetz,
clkP = ™~Halt & clk,
clkB = ™clk;

always@{posedge clkP) beqgin
if {™Resetz) halt tmp = 8;
else halt_tmp = HaltP;

end

alwaysB@{negedge clkP}) begin
if {™“Resetz) Halt = B8;

else Halt = halt_tmp;

end

endmodule

Line 1 Col 1 INS |« | v]

E systolic_multiplier.v - Text Editor

module 3ystolic_multiplier{C,Halt , A,B,Im,Resetz,CEz,clk}); =)
input Im, clk, CEz, Resetz;
input [7:08] A, B;
output [15:8] C;
output Halt;
wire loadA, loadB, clkP, clkB, HaltP, wire B, So;
wire [7:8] wire A, wire mult;

CHTR inst1{loadf,loadB,clkP, Halt,clkB, £ 7 outputs
Im,clk,Resetz ,HaltP); /f inputs

regA inst2{wire_A , A,loadA);

b_piso inst3{wire_B , B,loadB,clkB);
REG_mult insti{wire_mult , wire_A,wire_B);
summ inst5({So , wire mult,Resetz,clkP);

C_SIPD inst6(C,HaltP , So,Resetz,CEz,clkP);
endmodul e

Line 10 [Col 41 INS <] | v[]

SIMPLE EXAMPLE VALUES FOR THE SIMULATION: (the interesting part being after)

i MAX+plus Il - c:\documents and settings\drixos\bureau\altera\systolic_multiplier - [systolic_multiplier.scf - Waveform Editor]

');S MaX+plusII File Edit Wiew MNode Assign Utlites Options Window Help

=== o N LOREBEEEL EBE EEe REEE S
h Ref: [1.0ms <-|+| Time: [0.0ns Interval: |-1.0ms
A
==/ Name: \fa|ue:l 1UU_IUu5 QUU_IUUS SUU.IUUS 4UU_IUUS 5UU.IUUS EUU.IUUS TUU_IUUS BUU_IUUS SUU_IUuS
.r CEZ =] x =]
= A DX 64
= B DX 2
&R = Resetz X
G): = Im X
By i s ipipipigipigipigipipigigigipinigipigininininiiy)
Halt X |
= DX 128

We can se that positive and negative values arkimgp(FF = -1 => 2xFF = -2 and FFFE = -2).

i MAX=+plus Il - c:\documents and settings\drixos\bureaualtera\systolic_multiplier - [systolic_multiplier.scf - Waveform Editor]

'ﬁ: MAX+plusII File Edit View MNode Assign Utlities Options Window Help

Ri==I=] N ORBERDL R HEE TEREE B
[Ref |0.0ns |:|;| Time: [177 Ous Interval: (177 0us
A 0.0ns
=5 | Mame: _Value: 100_|Uu9 EUU.IUUS SUU_IDUS 4UU_IUUS SUU;UUS EUU_IUUS TUU_IUUS BUU_IUUS QUU.IUUS
9= CEz T o]
= A HFF FF
m= B D2 2
& = Resetz 1
e‘; = m 1
- ci Nipigipigipigipgisigipigipigipigipipipininininin
Halt 0 |
C H 0000 |- FFFE

Time analysisThis part is interesting because we can estinhaeniaximum speed of our component to
compare it with the architectural description.

&+ Timing Analyzer

Delay Matrix o
Destination
C1 c2 C3 C4 [CE c7 Ca CH ci0
EE
3 E?
u |CEz 11.4ng 12.7ns 12.7ns 12.7ns 11.59ns 12.Eng 12.6nz 12.Eng 12.6ns 12
I ek 17.3ns 17.0ns 16.7ns 17.0nz 17.0ns 17.0ns 17.0ns 17.0nz 17.
g Im —
Resetz -
<] [on
0 50 100
Start | | ListPaths |

This analysis gives a maximum time of 19.2ns indwotditions.
The maximum speed is thus around 1/19:2268 MHz (but obviously, this value is just an esttran)

In the report files (*.rpt) we can see, among othérgs, the chip selected by Max+plus

For the behavioural multiplier , the MAX7000 family didn’t fit then | chose a FLEBR0OO EPF6010ATC100):

{Chip/ Input Output Bidir LCs!
'EOF Device Pins Pins Pins LCs= % Urilized

multbehav altera

(EPF&010ATC100-1Y 20 17 0 363 B =

i** DEVICE S5UMMARY **

' Chip/ Input Cuatput Bidir LCs
EPOF Device Pins Pins Pins LCs= % Utilized

Esystnlig:maltiﬁliEI\
(EPFEOlOATClOO—i) 20 17 0 T E %

_-

As we can see the occupation ration is greathebaitthe RTL desigrZl /B = more than 5 times better!

Note: | tried to compile the architectural but ihde my computer freeze every time...

For the behavioural multiplier (part2) :

ETDtal dedicated input pins u=ed:
Total I/0 pins used:

ETDtal logic cells u=ed:

Eﬁverage fan-in:

iTDtal fan-in:

iTDtal input pins regquired:

ETDtal output pins reguired:

ETDtal bidirectional pins required:
ETDtal reserved pins required
ETDtal logic cells reguired:

ETDtal flipflops required:

ETDtal packed registers required:
iTDtal logic cells in carry chains:
ETDtal number of carry chains:

Total logic cells in cascade chains:

'Total number of cascade chains:

ESynthesized logic cells:

__

ETDtEl dedicated input pins used:
'Total I/C pins used:

'Total logic cells used:

‘Average fan-in:

ETDtal fan-in:

ETDtEl input pins regquired:

iTDtEl output pins regquired:

ETDtEl bidirectional pins required:
ETDtal reserved pins required
ETDtal logic cells reguired:

ETDtal Flipflops required:

ETDtal packed registers required:
ETDtal logic cells in carry chains:
ETDtEl number of carry chains:

ETDtEl logic cells in cascade chains:

ETDtEl nunmber of cascade chains:

ESynthesized logic cells:

=> My RTL multiplier takes a few DFF more but if we
compare the quantity of logic cells used thereBig 2ore
in the behavioural than in the RTL.

Even if we assume that it's because of a bad claidave
rebuild DFF with 6 NAND gates we have 287 / 6 = enor
than 47 DFF in excess.

A positive-edge-triggered D flip-flop=> => =>

This diagram shows that, as | sais before, a DFF is
composed by 6 NAND gates

33/867
363/880
3.45/4
1255/3520

33/67

TE/BE0

2.42/4
18473520

20

(100%)
{ 49%)
{ 41%)
[B6%)
(35%)

(100%)!
(29%)]
(&%)
[60%)
(5%)

e

Ol

Let's look at the time analysis of the automatittsgsis of thdehavioural multiplier :

cg c3 clo cl clz cl3 cld cl15 halt
bE
b7
cez 9Ens 11.5ns 11.5ns 11.5ns 11 .2ns 11 .2ns 10.8ns 10.8ns
clk 8.9ns 10.7ns 10.7ns 11.0ns 10.7ns 10.7ns 11.0ns Ting

im

resz

This analysis seems to give a maximum time of 12.#he maximum speed is thus around 1/12:48@MHz
(but obviously, this value is just an estimation)

Compared to the 52 MHz of the RTL descriptionntd what we would expect but we have to rememksdr th
the electronic is a perpetual compromise, the spebetter but it uses a lot more of silicon area..

8 Conclusion

I'm really happy to have taken the time to compaee RTL synthesis and the behavioural synthesis
with Max+plus. This is a good finalisation of thengparison of automatic and semi-manual synthesis T
report has been a really good approach to the sgistlight. This assignment made me discover afltricks
with Max+plus simulator, Silos simulator and alserNog HDL (definitively confusing considering théve
seen VHSIC HDL previous year).

However, | have discovered a good overview ofa@hmsmplex uses, but I'm obviously still very far of
the full potentials. | also have discovered whatbisnvestigate for real: as much for the numbesgggtems as
for the multiplications algorithms and multiplieistook a lot of time but | also learned a lot. Aodviously |
studied different levels of abstraction, where pegticularly struggled at the end.

My programs are definitively not the only meangd¢ach the aim and obviously, improvements exist

but anyway, I'm really proud to have discovered mesign techniques and a new HDL, | know it alsistex
AieraHDL, SystemC, and more than ten or so but | saitdnthe time...

4 References:

BOOKS Fundamentals of DIGITAL LOGIC with Verilog desi@rown Vanesic - Mc Graw Hill)
DIGITAL FUNDAMENTALS8ed. (Thomas FLOYD - Pearson Education Internatipna
The Verilog Hardware Description Languag®éd. (Thomas & Moorby's - Kluwer Academic)
Verilog HDL: A Guide to Digital Design and Synsige (Samir Palnitkar - Prentice Hall)

WEBSITES: http://en.wikipedia.org
http://www.cours.polymtl.ca/ele2300/acetates.htm
http://ieeexplore.ieee.org
http:/ltams-www.informatik.uni-hamburg.de
http://www.dec.usc.es
http://www-history.mcs.st-andrews.ac.uk
http:/lapwww.epfl.ch

| ndex:

Here is the Verilog code of threehavioural multiplier description used to compare to the RTL synthesis:

module multbehav_alteradhalt,c, ffoutputs
clk,a,b,resz, cez,im); // inputs

output halt;

output [15:8] c;

req [15:8] av, br, cr, C;
reg halt;

input [7:8] a,b;

input clk,resz,cez,im;

always@{cez or cr) begin
if{tcez) ¢ = cCr;
else ¢ = 16°hzzzz;
end

always@{posedge clk) begin
if{*resz) begin
br=8;
br[7¥:8] = b;
if (b[71)
br[15:8] = 8°hff;
if{im) begin
ar=a;
ar[7:8] = a;
if {a[7]) ar[15:8] = 8'hff;
end
cr=8;
halt=8;
end
else beqgin
cr = ar=hr;
halt = 1;
end
end
endmodule

