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  0    Purpose: 
 
 This laboratory report is the result of our introduction to the principle of RTL design (Register Transfer 
Level) in Verilog HDL (Hardware Description Language). The objective is to design a systolic multiplier in 
Verilog using the Simucad Silos® software. We are going to meet this challenge by firstly designing an HDL 
description of an architectural version and finally every each module that composes this multiplier from the two 
8bits inputs to the 16bits output (without forgetting all the other signal pins). As this multiplier is designed for 
digital signal processing algorithms, it has to be able to load firstly 2 inputs and then keep 1 input to multiply 
different values to it, but more details will be given later. 
 In a first time we are going to look for diverse numbering systems to choose the best design. We are 
then going to have a look on different multiplier designs to satisfy the requirements. The chosen design will be 
simply explained and tested bloc by bloc to finally implement and simulate the overall instantiation of all the 
internal components. 



  1    Structure of the assignment: 
 

� Introduction, structure. 
� Numbering systems. 
� Multiplications algorithms. 
� Examples of a few multipliers. 
� Requirement specification. 
� Verilog description of the selected multiplier. 
� Description of the results. 
� Conclusion. 

 

  2    Numbering systems: 
 
First of all, let's see have a look on a few number classification. There are two principal notations, the positional 
and non-positional system (I'm not going to investigate the non positional system). The Babylonians developed 
the positional system (or place-value system) based essentially on the numerals for 1 and 10. The Egyptians had 
a system of numerals with distinct hieroglyphs for 1, 10, and all the powers of 10 up to one million. We can see 
on the following table illustration of the idea of position system: 
 

Position 3 2 1 0 -1 -2 ... 

Weight b3 b2 b1 b0 b − 1 b − 2 ... 

Digit a3 a2 a1 a0 c1 c2 ... 

Decimal example weight 1000 100 10 1 0.1 0.01 ... 
 
 
As everyone knows the numbers commonly used were invented by Arabs but the representation of the ones 
used nowadays has had an evolution: 
 
The numerals from al-Sizji's treatise of 969: 

 
 
The numerals from al-Biruni's treatise copied in 1082: 

 
 
Al-Banna al-Marrakushi's form of the numerals: 

 
 
It's known that several numeral bases exist and we don't think about it but almost everybody use 3 of them 
every day. The most commonly used is obviously the base 10 (called base decimal). The question "why 10?" 
could be asked and the answer is as simple as the numbers of our fingers. 
The two other bases are the base 12 (called base duodecimal) and the base 60 (called base sexagesimal). 
Those bases are simply used in time system, we have 12 hours before the midday and 12 other before the 
midnight (we use it also for the 12 months in a year). The base sexagesimal is used for the 60 seconds in a 
minute and the 60 minutes in an hour (but was already used by the Babylonians). 



There is also a few other used bases beginning by the base 1, but before that let's talk about the 0: 
The word "zero" came via French zéro from Venetian language zero, which (together with "cipher") came via 
Italian zefiro from Arabic رفص, şafira = "it was empty", şifr  = "zero", "nothing", which was used to translate 
Sanskrit śūnya, meaning void or empty… Ptolemy, influenced by Hipparchus and the Babylonians, was using a 
symbol for zero (a small circle with a long over bar) within a sexagesimal numeral system otherwise using 
alphabetic Greek numerals. Because it was used alone, not just as a placeholder, this Hellenistic zero was 
perhaps the first documented use of a number zero in the Old World. 
- The smallest base, the base 1 (also called sticks) is more used than we think, we can find it for example in jail 
cells where the prisoners count the days on the walls: 
 

 
 
- The base 2, 8 and 16 (binary, octal and hexadecimal bases), used in all computers and digital systems. 
Its use is common because of the simplicity of the root, the base 2: on/off, true/false, in/out, good/bad… 
Almost everything is adaptable to the binary system. 
 

decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 

octal 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 

binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 

 
The base 8 is just less used nowadays but was also practical: it's just a group of 3 binary digits (also called bits) 
that are finally represented in 1 octal digit (from 0 to 7). 
The base 16 is now every where considering that just 1 character can represent a value between 0 and 15, the 
information density is really better and the simplicity of encoding is the same than in the octal system: 
 

 binary 1 0101 1010 1010 1100 1111 0111 

 regrouped by 4   1    0101    1010    1010    1100    1111    0111  

 regrouped in hexadecimal    1   5  A  A  C  F  7 

 hexadecimal 15AACF7 

 
It almost exists an infinity of other numeral system but they are not interesting in our domain. 
 
Just for the anecdote, a famous French (funny) singer, Bobby LAPOINTE invented his own numeral system: 
The numeration "Bibi": 
 

 
 

Why Bibi? Because 16 can be written 2 to the power 2 to the power 2 and as we talk about binary for the base 
2, we could use the term« Bi-Binary » for the base 4, and « Bi-Bi-Binary » for the base 16, but it was too long 
then the artist decided to shorten it in "BiBi". Boby Lapointe invented the notation and pronunciation of the 16 
numbers using 4 consonant and 4 vowels: 
 
HO, HA, HE, HI, BO, BA, BE, BI, KO, KA, KE, KI, DO, DA, DE, DI. 
 



To go back in a more serious domain, we are going to design a multiplier that allows taking negative values. 
We thus need to investigate this domain: 

1.1 Sign-and-magnitude 

One may first approach this problem of representing a 
number's sign by allocating one sign bit to represent the 
sign: set that bit (often the most significant bit) to 0 for a 
positive number, and set to 1 for a negative number. The 
remaining bits in the number indicate the magnitude (or 
absolute value). Hence in a byte with only 7 bits (apart 
from the sign bit), the magnitude can range from 0000000 
(0) to 1111111 (127). Thus you can represent numbers 
from −12710 to +12710. A consequence of this 
representation is that there are two ways to represent 0, 
00000000 (0) and 10000000 (−0) which is a real waste.  

This approach is directly comparable to the common way 
of showing a sign (placing a "+" or "−" next to the number's 
magnitude). Some early binary computers (e.g. IBM 7090) 
used this representation, perhaps because of its natural 
relation to common usage. (Many decimal computers also 
used sign-and-magnitude.) 

Alternatively, a system known as ones' complement can be used to represent negative numbers. The ones' 
complement form of a negative binary number is the bitwise NOT applied to it — the complement of its 
positive counterpart. Like sign-and-magnitude representation, ones' complement has two representations of 0: 
00000000 (+0) and 11111111 (−0). As an example, the ones' complement form of 00101011 (43) becomes 
11010100 (−43). The range of signed numbers using ones' complement in a conventional eight-bit byte is 
−12710 to +12710. 

To add two numbers represented in this system, one does a conventional binary addition, but it is then 
necessary to add any resulting carry back into the resulting sum. To see why this is necessary, consider the 
following example showing the case of the addition of −1 (11111110) to +2 (00000010). 

        binary    decimal 
       11111110     -1 
    +  00000010     +2 
   ............    ... 
     1 00000000      0   <-- not the correct answer 
              1     +1   <-- add carry 
   ............    ... 
       00000001      1   <-- correct answer 

In the previous example, the binary addition alone gives 00000000 => not the correct answer! Only when the 
carry is added back in does the correct result (00000001) appear. 

This numeric representation system was common in older computers; the PDP-1 and UNIVAC 1100/2200 
series, among many others, used ones'-complement arithmetic. 

Note on terminology: The system is referred to as "ones' complement" because the negation of x is formed by 
subtracting x from a long string of ones. Two's complement arithmetic, on the other hand, forms the negation of 
x by subtracting x from a single large power of two.  

 

 

Binary 
value 

One's 
complement 

interpretation  

Unsigned 
interpretation  

00000000 0 0 

00000001 1 1 

... ... ... 

01111101 125 125 

01111110 126 126 

01111111 127 127 

10000000 −127 128 

10000001 −126 129 

10000010 −125 130 

... ... ... 

11111110 −1 254 

11111111 −0 255 
The values of an 8-bit integer 



1.2 Two's complement 
The problems of multiple representations of 0 and the need for the end-around carry are circumvented by a 
system called two's complement. In two's complement, negative numbers are represented by the bit pattern 
which is one greater (in an unsigned sense) than the ones' complement of the positive value. In two's-
complement, there is only one zero (00000000), that point is really important. 
♣ Negating a number (whether negative or positive) is done by inverting all the bits and then adding 1 to that 
result. Addition of a pair of two's-complement integers is the same as addition of a pair of unsigned numbers 
(except for detection of overflow, if that is done). For instance, a two's-complement addition of 127 and −128 
gives the same binary bit pattern as an unsigned addition of 127 and 128, as can be seen from the table: 
 

 
 
♣ An easier method to get the two's complement of a number is as follows: 
      Example 1 Example 2 
1. Starting from the right, find the first '1': 0101001 0101100 
2. Invert all of the bits to the left of that one: 1010111 1010100 
…the underlined bits staying unchanged. 
 
In computer circuitry, this easier method is no faster than the "complement and add one" method; both methods 
require working sequentially from right to left, propagating logic changes. The method of complementing and 
adding one can be sped up by a carry look-ahead adder circuit; the alternative method can be sped up by a 
similar logic transformation. 

 

♣ A more formal definition of two's complement negative number (denoted by N* in this example) is derived 
from the equation N * = 2n − N, where N is the corresponding positive number and n is the number of bits in the 
representation. 

For example, to find the 4 bit representation of -5: 

N = 510 therefore N = 01012 
n = 4 

Hence: 

N * = 2n − N = 24 − 510 = 100002 − 01012 = 10112 

The calculation can be done entirely in base 10, converting to base 2 at the end: 

N * = 2n − N = 24 − 5 = 1110 = 10112 
 
 
 

Decimal Two's complement 
127 0111 1111 

64 0100 0000 

1 0000 0001 

0 0000 0000 

-1 1111 1111 

-64 1100 0000 

-127 1000 0001 

-128 1000 0000 
Some 8-bits numbers to note 

 



1.3 Comparison table 

The following table compares the representation of the integers between positive and negative eight (inclusive) 
using 4 bits. 

4-bit Integer Representations 

Decimal Unsigned Sign and 
Magnitude 

Ones' 
Complement 

Two's 
Complement 

Excess-7 
(Biased) 

+8 1000 N/A N/A N/A 1111 

+7 0111 0111 0111 0111 1110 

+6 0110 0110 0110 0110 1101 

+5 0101 0101 0101 0101 1100 

+4 0100 0100 0100 0100 1011 

+3 0011 0011 0011 0011 1010 

+2 0010 0010 0010 0010 1001 

+1 0001 0001 0001 0001 1000 

(+)0 0000 0000 0000 0000 0111 

(−)0 N/A 1000 1111 N/A N/A 

−1 N/A 1001 1110 1111 0110 

−2 N/A 1010 1101 1110 0101 

−3 N/A 1011 1100 1101 0100 

−4 N/A 1100 1011 1100 0011 

−5 N/A 1101 1010 1011 0010 

−6 N/A 1110 1001 1010 0001 

−7 N/A 1111 1000 1001 0000 

−8 N/A N/A N/A 1000 N/A 
 

  3    Multiplications algorithms 

Theory 

The product of two n-bit numbers can potentially have 2n bits. If the precision of the two two's complement 
operands is doubled before the multiplication, direct multiplication (discarding any excess bits beyond that 
precision) will provide the correct result. For example, take 5 × −6 = −30. First, the precision is extended from 
4 bits to 8. Then the numbers are multiplied, discarding the bits beyond 8 (shown by 'x'): 

  00000101  (5) 
× 11111 010  (−6) 
 ========= 
      101 0 
    101 0 
   101 
  101 
 x01 
xx1 
========= 
xx11100010  (−30) 

This is very inefficient; by doubling the precision ahead of time, all additions must be double-precision and at 
least twice as many partial products are needed than for the more efficient algorithms actually implemented in 
computers. Some multiplication algorithms are designed for two's complement, notably Booth's multiplication 
algorithm. Methods for multiplying sign-magnitude numbers don't work with two's complement numbers 
without adaptation. There isn't usually a problem when the multiplicand (the one being repeatedly added to 
form the product) is negative; the issue is setting the initial bits of the product correctly when the multiplier is 
negative. 



Two methods for adapting algorithms to handle two's complement numbers are common: 

• First check to see if the multiplier is negative. If so, negate (i.e., take the two's complement of) both 
operands before multiplying. The multiplier will then be positive so the algorithm will work. And since 
both operands are negated, the result will still have the correct sign. 

• Subtract the partial product resulting from the sign bit instead of adding it like the other partial products. 

As an example of the second method, take the common add-and-shift algorithm for multiplication. Instead of 
shifting partial products to the left as is done with pencil and paper, the accumulated product is shifted right, 
into a second register that will eventually hold the least significant half of the product. Since the least 
significant bits are not changed once they are calculated, the additions can be single precision, accumulating in 
the register that will eventually hold the most significant half of the product. In the following example, again 
multiplying 5 by −6, the two registers are separated by "|": 

 0101  (5) 
×1010 (−6) 
 ====|==== 
 0000|0000  (first partial product (rightmost bit i s 0)) 
 0000|0000  (shift right) 
 0101|0000  (add second partial product (next bit i s 1)) 
 0010|1000  (shift right) 
 0010|1000  (add third partial product: 0 so no cha nge) 
 0001|0100  (shift right) 
 1100|0100  ( subtract last partial product since it's from sign bit) 
 1110|0010  (shift right, preserving sign bit, givi ng the final answer, −30) 

 

Implementations: 

Older multiplier architectures employed a shifter and accumulator to sum each partial product, often one partial 
product per cycle, trading off speed for die area. Modern multiplier architectures use the Baugh-Wooley 
algorithm, Wallace trees, or Dadda multipliers to add the partial products together in a single cycle. The 
performance of the Wallace tree implementation is sometimes improved by Booth encoding one of the two 
multiplicands, which reduces the number of partial products that must be summed. 
 
♣ Booth's multiplication algorithm Procedure: 
If x is the count of bits of the multiplicand, and y is the count of bits of the multiplier : 
    * Draw a grid of three lines, each with squares for x + y + 1 bits. Label the lines respectively A (add), S 
(subtract), and P (product). 
    * In two's complement notation, fill the first x bits of each line with : 
          ● A: the multiplicand 
          ● S: the negative of the multiplicand 
          ● P: zeroes 
    * Fill the next y bits of each line with : 
          ● A: zeroes 
          ● S: zeroes 
          ● P: the multiplier 
    * Fill the last bit of each line with a zero. 
    * Do both of these steps y times : 
         1. If the last two bits in the product are... 
                ● 00 or 11: do nothing. 
                ● 01: P = P + A. Ignore any overflow. 
                ● 10: P = P + S. Ignore any overflow. 
         2. Arithmetically shift the product right one position. 
    * Drop the last bit from the product for the final result. 
 
 
 



= 

= = 

= = 
= 
= 

= 

Example of Booth's multiplication: 
 
Find 3 × -4: 
 
    * A = 0011 0000 0 
    * S = 1101 0000 0 
    * P = 0000 1100 0 
 
 
    * Perform the loop four times : 
          ● P = 0000 1100 0. The last two bits are 00. 
          ● P = 0000 0110 0. A right shift. 
          ● P = 0000 0110 0. The last two bits are 00. 
          ● P = 0000 0011 0. A right shift. 
          ● P = 0000 0011 0. The last two bits are 10. 
          ● P = 1101 0011 0. P = P + S. 
          ● P = 1110 1001 1. A right shift. 
          ● P = 1110 1001 1. The last two bits are 11. 
          ● P = 1111 0100 1. A right shift. 
 
=> The product is 1111 0100, which is -12. 
 
 
Practical example of implementation in a PIC microcontroller: (I had to use it in a lab for a decimal conversion) 
 
; The following codes implement Booth's algorithm f or two signed 8 bit numbers. 
; It support 8.8 fixed-point format where M is the integer and A is fraction. 
; The result will be 16 bits wide. 
 
count  EQU 20   
M  EQU 21  ; Multiplicand 
Q   EQU 22  ; Multiplier and final result 
A  EQU 23   ; Remainder 
 
 ORG  0  ; initialization code 
 goto  Main 
 
Main    ; 5.5 x 2 = 11 (0B) 
 movlw  5 ; load number for Multiplicand, M=5 
 movwf  M 
 movlw  2 ; load number for Multiplier 
 movwf  Q 
 movlw  1 ; A=1, this equals 0.5 in decimal. 
 movwf A 
 call  Booth_MUL 
 sleep 
 
Booth_MUL 
 movlw  8 ; number of bits 
 movwf  count 
 movf  M,W 
 xorwf  Q,W  ; store the result sign 
 
bthloop  movf  Q,W 
 andlw  0x01 
 xorwf  STATUS,F ; check the pair of bits 
 btfss  STATUS,C 
 goto  arshft 
 movfw  M 
 btfsc  Q,0  ; if the Q_0 bit is 1  
sub8  subwf  A,F  ; then subtract 
 btfss  Q,0 
add8  addwf  A,F 
arshft  bcf STATUS,C 
 btfsc  A,7 
 bsf  STATUS,C 
 rrf  A,F 
 rrf  Q,F 
 decfsz  count,F  ; check if we are done 
 goto  bthloop 
done  return 
  
 END 



We have also seen a simpler algorithm: (still in PIC assembler) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
; 8 by 8-bit unsigned multiply routine. 
; No checks made for M1 or M2 equal to zero 
; R_hi, R_lo = M1 * M2 
 
 LIST p=16F877 
 #include <p16F877.inc> 
 
M1 equ 20 
M2 equ 21 
R_lo equ 22 
R_hi equ 23 
  
Main movlw h'9c' 
 movwf M1 
 movlw 4 
 movwf M2 
 call MUL8by8 
 sleep 
   
MUL8by8 clrf R_hi  
 clrf R_lo 
 clrw 
loop1  addwf  M2,W   ; add M2 to itself 
 btfsc  STATUS,C  ; if carry set 
 incf  R_hi   ; increment high byte 
 decfsz  M1 
 goto  loop1 
 movwf  R_lo 
 return 
 
 end 
 

 



  4    Examples of a few multipliers 
 
As required, I'm going to research different multiplier implementations. I'm going to release my results 
chronologically, and with more or less details in function of the multiplier found. 
 

 Modified Booth algorithm implementation: 

This is one of the most popular techniques to reduce the number of partial products to be added while 
multiplying two numbers. Reduction in number of partial products depends upon how many bits are recoded. If 
3-bit recoding (Radix-4) is used the number of partial products is reduced by half. This is a great saving in 
terms of silicon area and also speed as number of stages to be added is reduced to half compared to normal add 
and shift multiplication. 

 
…But the complexity is greatly increased and the requirement specifications are not completely met. 
 
 
Bit Parallel Systolic Architecture: 
 

 
 
This Architecture is one of several versions of the Systolic design, we're going to see later a more accurate and 
closest description, but the concept represented here is roughly what we are looking for. 



Parallel multiplier (4x4 bits): 

 

 

The good point of this multiplier is its easy expandability. 

 

This multiplier takes two 4-bit inputs X and Y and generates the 8-bit product value P. Each multiplier cell uses 
a standard AND-gate to calculate the 1-bit product of its Xi and Yi inputs, and a standard full adder to sum the 
partial products.  

Naturally, it is more space efficient to use a rectangular orientation of the cells for an actual VLSI 
implementation. Due to the regularity of the structure, it is feasible to generate the layout of such multipliers 
automatically for a given integrated circuit technology. While higher speed multipliers are possible, the dense 
layout of the multiplier array will often compensate any speed advantage of more complex circuits built from 
standard cells, unless expensive and tedious manual layout is used for the more complex multipliers.  

…Here again, the requirement specifications are not completely met, we thus have to continue our researchs. 

 

 

 



Serial-Parallel Multiplier  

 

This multiplier is the simplest one, the 
multiplication is considered as a succession of 
additions.  
If A = (an an-1……a0) 
And B = (bn bn-1……b0)  

The product A.B is expressed as:  
A.B = A.2n.bn + A.2n-1.bn-1 +…+ A.20.b

0  

The structure of this multiplier is suited only 
for positive operands. If the operands are 
negative and coded in 2’s-complements:  

1. The most significant bit of B has a 
negative weight, so a subtraction has to 
be performed at the last step. 

2. Operand A.2k must be written on 2N 
bits, so the most significant bit of A 
must be duplicated. It is easier to shift 
the content of the accumulator to the 
right instead of shifting A to the left. 

 
 
 
An implementation of sequential multipliers using Booth algorithm (RADIX):  
 
One of the simplest multiplication algorithms is the shift-and-add algorithm but its performance is poor and can 
be improved through more complicated algorithms, such as the Booth algorithm. 

 
 

One of the possible implementations using the Booth algorithm(implemented using the radix-8 Booth algorithm). 



In fact, in order to obtain high performance multipliers, several hybrid multipliers which are implemented 
through a combination of several algorithms exist. For example, the numbers of partial products are first 
reduced using the Booth algorithm. Then these partial products are accumulated through other techniques, such 
as Wallace/Dadda reduction, or carry-save adder compaction. A major drawback of these multipliers is that 
they require a large amount of silicon area. 
 
 
Semi-systolic multiplier: 
 

 
 
 
The previous graphical description is not complete but really mean full; the requirements are now almost 
completely met but we are going to see that the next multiplier corresponds almost exactly to our Requirement 
specification, and its description is really more accurate: 
 
 
"Multiplicateur séquentiel":   
 

 



  5    Requirement specification: 
 
For this part, maybe quickly treated, please consider the other explanations given later. 
Let's see how our component has to be interfaced to have a mean full picture in head: 

 
Official design specifications: 
 
The parallel/serial multiplier has two 8-bit inputs and four control signals. The output is 16-bit wide and a status 
signal 'Halt'. It multiplies two words in 2's complement format (7-bit plus a sign). The multiplier is for digital signal 
processing algorithms which require one of the inputs to be latched inside the multiplier to be considered as a 
common factor for the multiplication. The multiplier has three phases: initialisation, load both inputs and load only 
one input. The multiplication based on the extended sign-bit for 2's complement multiplication, i.e., the sign bits for 
the multiplier and multiplicand are extended indefinitely as shown in the floor plan. The operations and signals of 
the multiplier are as follows: 
 
Clock signal: to synchronise the flow of the operations. 
Chip enable: to enable the chip for operation, and to isolate the output from the global bus, i.e., CEz = 0, 
     the chip is ready for receiving inputs from the input buses and sending the output to the output bus, 
     if CEz = 1, the chip is disabled and latches the previous inputs and the results, while the output 

register is in the tri-state. 
Reset signal: to reset all the flip-flops to their initial values for a new operation. When RS = 0 all the flip-flops are 

initialised, and if RS = 1 the multiplier starts normal operation. 
Halt signal: the multiplier generates a halt signal to indicate that the multiplication is completed, and the output 

can be collected from the output register, and the chip is ready for new input(s). 
Input mode: to load one input or both inputs. 
Inputs:   can be loaded in parallel during the initialisation phase. 
 
 
 
Details of understanding/Interpretation for the design specifications: 
 
As said previously, A and B are 8 bits inputs, C is a 16 bits output. 
The output C is in high impedance state when CEz = 1. (Disjunction of the chip to the bus for the output C) 
The Resetz signal has to be sent to (re-)initialize the internal registers state (active low signal). 
The signal Im (Input mode) allows selecting if we want to load 1 or 2 inputs (A is not loaded if Im  = 0). 
The output Halt is set @ 1 when the multiplier has completely finished its calculation and is thus ready. 

AA  BB  

CC  

Resetz 

clk 
Im 

CEz 

  
  

SSyyssttoolliicc  mmuullttiipplliieerr  Halt 



Graphical study of all signals: 
 
 
♣ Resetz: (1 bit input) Active low. 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
♣ Im:  (1 bit input)  
 
 
 
 
 
 
 
 
 
 
 
♣ CEz: (1 bit input) Active low. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
♣ Halt:  (1 bit output) 
 
 
 
 
 

 

A is "disconnected" from chip. If we 
change its value on the bus, the multiplier 
won't consider this modification 

With Im=1 and a Resetz 
falling edge, the value of A 
will be loaded in the chip. 

The 8 bit binary inputs (A and B) are 
loaded into the chip but A is only 
loaded if Im = 1. 

Multiplier output connected to 
main system bus, so that the 
answer can be passed on. 

Disconnected from bus 
(high impedance state 
in output) 

Busy- the multiplier is in operation.  

Finish: multiplier has finished 
adding and shifting and has 
filled in the 16 bits of the 
answer register C. 

Start 
multiplication 

Normal operation, A and B have no 
effect on the operation because they 
aren’t loaded into the chip yet.  

Reset chip. All 
registers will 
be cleared 



  4    Verilog description of the selected multiplier 
 
The principle of "shift-add" being chosen, we are thus going to design a first version of our multiplier. This is 
version is not the Multspec as maybe expected, because this HDL description doesn't change a lot: The 
difference between the Multspec and architectural model is the process of the multiplication; the depth of the 
multiplication technique was too simplified in the Multspec version. 
This architectural description is almost the final component considering that it's giving what we need, but it's 
not taking care of the sequential aspect of the systolic multiplication. 
 
Verilog code of architectural description: 
 

 
 
 

♣ The sign bit is extended in line 24 for 
register B, in line 28 for register A but 
only if Im is high (only if the two 
multiplicands are required to be 
loaded). 
 
♣ The #0 in line 43 is to force the 
affectation of halt to be the last. The 
reason that the processor needs to be 
told to do this is that the processor is 
modelling a concurrent system where 
functions are being performed 
simultaneously. 
The processor however, is a sequential 
processor and can only do one thing at 
once, so it is required to be told which 
calculation/function to do first (or last). 
 
♣ Lines 47 and 48 detail the action 
taken according to the chip enable 
signal. If the chip enable signal is high 
then the chip is disabled from the bus, 
and outputs cannot be taken from an 
output of the module (high impedance 
state => disconnection from the bus). 
 
♣ The ‘mult’ output is added to the 
sum register, a shift register that is 
shifted right each time it is added to. 
The LSB of the SUM register is shifted 
in to the MSB of the C_reg (virtual 
output register) which is also shifted 
right (16 times until finished). Each 
‘mult’ multiplication consists of one bit 
of the B_reg LSB multiplied by the 
multiplicand in input register A. When 
a new multiplication occurs in ‘mult’, 
the result is accumulated to the 
previous contents of sum register, 
C_reg is then shifted right by 1, and the 
LSB of sum register is input in to the 
MSB of the C_reg register; sum register 
is then shifted right by 1 and so is the 
input multiplier B_reg (which brings 
the next significant bit to the LSB to 
produce the next partial product). Then 
the loop occurs again, and as before 
when the loop has finished and the 



multiplication result is ready in C_reg virtual register, the value is output 
to register C if CE is low or Z if CE is high. 
 
Test of the architectural description: 
 
As this design is just a first overview I just test it simply: 
 

 
 
 
Chronogram of the test result: 
 
As I've got a few problems to read certain mass of letters I found this solution that allow me to read the result 
without loose myself in all the lines of the result. I'll do it later anyway, but the least possible, just once. 
 

 
 
We can see the result obtained for 0x7F × 0x7F ( = 127 × 127 = 16129) is 0x3F01 = 16129 as expected. 
We can see the result obtained for 0x81 × 0x7F ( = -127 × 127 = -16129) is 0xC0FF = -16129 as expected. 
I chose 127 because it's the maximum value on 8bit (2's complement representation). 
…but the minimum value is obviously -128! 
 
 



RTL description: 
 
Now we have met a good part of the challenge, we have to complete the requirement list, the sequential aspect 
being absent in the "Roll call". 
 
 
 
Internal components: 

 

 
 
 
 
 
 
♣ RegA: (Parallel In, Parallel Out) 
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This component is one of the simplest, its Verilog code and tests are thus really straight forward: 
 

 
 
As expected, the value in input is correctly copied in output. 
 
 
 
 
 
 
♣ b_piso: (Parallel In, Serial Out) 
  

 

 
 
 
 
 
 
Here the sequence is:  1) input has to be ready 
   2) send signal LoadB 

3) run clkB so that the 8 bit word gets shifted out of the register serially  
 

        LoadB 

Load the 8bits input from the bus 
 

clkB 

LSB is released 
sequentially to 
REG_mult 



 
 
As we can see, the MSB is not affected by the shift process but it's propagated on the lower significant bits. 
 
 
 

 
 
As expected, the internal register called B_reg send its MSB to the output (wire_B). We can also see the shift 
process of the internal register B_reg. 
I chose the value 0x80 on purpose: in binary it's 1000 0000 and if we shift it right 8 times, the MSB becomes 
the LSB then we see the 1 in output whereas we had 0 in the previous states. 
 
 
 
 
 
 
 



♣ REG_mult: (combinatorial component) 
 
Each bit coming from b_piso is pushed in "wire_B" and is multiplied (logical "and") by each of the 8 bits of 
wire_A to produce an 8 bit value in the wire_mult output: 
 
 
 
 

 
 

 
 
Note: we can see that this component is combinatorial because all the inputs are in the sensitivity list. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can see that the 8bits of wire_A are 
correctly multiplied by the bit of wire_B. 
 
=> wire_mult is equal to 0 if wire_B = 0 
and equal to wire_A if wire_B = 1. 
 
 
 

 
 
Note: The name of this component shouldn't be with REG because it's nothing to do with a register but when I 
wrote it I didn't really think about it and I never changed it; anyway, it's just a name… 
 
 
 
 



♣ summ:  
 
In the beginning, I designed a simple module for the sum that was working alone, but when I have instantiated 
the final multiplier, it didn't work and I found that the problem was from this component: 
 
 

 
 
 
 
I never found the problem then I decided to start again and I used a gate level description that helped me to 
design a new sum module using this principle: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



=> I thus implement it with a full adder block (8 cells for the 8 bits) where the carry out is fed back in the carry 
in at the next clock pulse. This is an implicit way to ripple it quickly and efficiently. Here is the add block cell: 
 

 
 
 
 
 
 
 
The sum of three 1 bit values can 
need to be represented on 2 bits. 
 
The curly brackets allow to 
concatenate the carry and So 
(making carry as the MSB) 
 

 
 

 
 
 
As expected, The 2 first lines show that 1+1+0 = 10 (in binary)… 
 

 
 
…and the 2 last lines show that 1+1+1 = 11 (in binary again). 
 
=> Then the functionality is correct. 
 
 



…and here is the module that instantiate 8 times the full adder cell: 
 

 
feed back of the sign bit 

 
 

 
 
 
Here we can see a strange 
way of displaying the 
result. I've virtually 
"concatenated" the 7 
internal wires called 
S_int and the output 
wire_S (being the MSB) 
to be able to see what is 
the value of the 
accumulation result. 
 
 
 
 
 
 

In the internal register called "S_int" we obtain half of the sum of the input "mult" and the previous " S_int ". 
=> Half  because of the shift action (which gives the entire part of the division by 2 to be more accurate). 
We thus obtain as expected:  
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♣ C_SIPO: (Serial In, Parallel Out) 
 
 

 
 
 
 
This shift register allows implementing the high impedance state when the multiplier is busy, it also allows 
resetting with the MSB at 1 (it's the marker that will count the 16 clock edges to raise the halt signal when the 
multiplication is finished) and finally it contains the halt memory cell. 
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To test if this component shifts correctly, I inject a 1 (just after the marker in the MSB of regC) in its input. 
The result is simple to expect: 
1 ->  1000 0000 0000 0000 
 1100 0000 0000 0000  AFTER 1 SHIFT 
 0110 0000 0000 0000  AFTER 2 SHIFTS 
 0011 0000 0000 0000  AFTER 3 SHIFTS… 
 
… 0000 0000 0000 0011  = RESULT EXPECTED (=0x0003) 
 
 

 
 
The initialisation is correctly made with the 1 in MSB (the marker) that gives: 

0b1000 0000 0000 0000 = 0x8000 
 
The output is effectively in high impedance state when CEz =1. 
 
And finally, the result expected (0x0003) is obtained. 



♣ CNTR: (control module) 
 
 
 The main purpose of CNTR is to logically generate the signals that are needed to control the modules of 
the system and maintain synchronicity. This component is thus mainly combinatorial, but we need to delay 
(synchronously) the HaltP (Provisional) signal then this part is sequential. 
 
There are two clock signals required in the system to allow for propagation of the multiplication into register C 
before the next shifting of register B. Therefore clkB is set equal to the negated clock input. The load signals 
are following Resetz but loadA is only set when Im is also high (when both multiplicands are required). 
The Resetz and CEz signals are unchanged then I didn't take care of them (but I need Resetz to load A and B). 
The clkP is set so as to be inhibited when Halt is set high (this is the clock that makes the register C and the 
summ’s shift). This is to stop the register C shifting the values out when the multiplication is complete and the 
full result is in register C. So clkP is assigned by ~Halt & clk.  
 

 
 
Halt is reset to zero when the reset signal goes low (system reset) and at the positive edge of the clkP, the Halt 
signal output from the module is passed to a virtual register halt_tmp, then in the negative edge of PC, the 
halt_tmp value is passed to the Halt output from the module (which is the real multiplier putput Halt). This 
creates a delay of one clkP cycle in the propagation of the signal HaltP to Halt. Therefore when the HaltP signal 
is set high as the LSB of the register C is 1, there is another shift of register C before the halt signal propagates 
through the CNTR module and the clkP is inhibited. Another reason for inverting clkP is to not loose the first 
bit of regB, which would be shifted out and lost if the reset signal went low then high before falling edge of the 
clkP, as the ‘mult’ module would not be ready to receive it. 
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In the following chronogram, the inputs names are highlighted to be able to distinguish them easily. 
 

 
The HaltP input signal is set 
high at time 33, and we can 
see that the Halt signal only 
goes high at time 40, the 
synchronisation is thus good. 
 
The clkP signal is correctly 
inhibited  by Halt and 
follows the clk as expected; 
the clkB is ~clk => OK. 
 
As we can see, the loadA and 
loadB are risen by Resetz but 
Im inhibits loadA. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Instantiation of all the components: 
 

 
 
block diagram: (instantiation of all the components using Altera Max+plus®) 

 
 

 



Test file: (this first test file is simplified to be able monitoring the output in the result text file, see next page) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  7    Description of the results: 
   1 clk = 0, C = 1000000000000000, Halt = 0 
   5 clk = 1, C = 0100000000000000, Halt = 0 
   6 clk = 1, C = 1100000000000000, Halt = 0 
  10 clk = 0, C = 1100000000000000, Halt = 0 
  15 clk = 1, C = 0110000000000000, Halt = 0 
  20 clk = 0, C = 0110000000000000, Halt = 0 
  25 clk = 1, C = 0011000000000000, Halt = 0 
  30 clk = 0, C = 0011000000000000, Halt = 0 
  35 clk = 1, C = 0001100000000000, Halt = 0 
  40 clk = 0, C = 0001100000000000, Halt = 0 
  45 clk = 1, C = 0000110000000000, Halt = 0 
  50 clk = 0, C = 0000110000000000, Halt = 0 
  55 clk = 1, C = 0000011000000000, Halt = 0 
  60 clk = 0, C = 0000011000000000, Halt = 0 
  65 clk = 1, C = 0000001100000000, Halt = 0 
  70 clk = 0, C = 0000001100000000, Halt = 0 
  75 clk = 1, C = 0000000110000000, Halt = 0 
  80 clk = 0, C = 0000000110000000, Halt = 0 
  85 clk = 1, C = 0000000011000000, Halt = 0 
  86 clk = 1, C = 1000000011000000, Halt = 0 
  90 clk = 0, C = 1000000011000000, Halt = 0 
  95 clk = 1, C = 0100000001100000, Halt = 0 
  96 clk = 1, C = 1100000001100000, Halt = 0 
 100 clk = 0, C = 1100000001100000, Halt = 0 
 105 clk = 1, C = 0110000000110000, Halt = 0 
 106 clk = 1, C = 1110000000110000, Halt = 0 
 110 clk = 0, C = 1110000000110000, Halt = 0 
 115 clk = 1, C = 0111000000011000, Halt = 0 
 116 clk = 1, C = 1111000000011000, Halt = 0 
 120 clk = 0, C = 1111000000011000, Halt = 0 
 125 clk = 1, C = 0111100000001100, Halt = 0 
 126 clk = 1, C = 1111100000001100, Halt = 0 
 130 clk = 0, C = 1111100000001100, Halt = 0 
 135 clk = 1, C = 0111110000000110, Halt = 0 
 136 clk = 1, C = 1111110000000110, Halt = 0 
 140 clk = 0, C = 1111110000000110, Halt = 0 
 145 clk = 1, C = 0111111000000011, Halt = 0 
 150 clk = 0, C = 0111111000000011, Halt = 0 
 155 clk = 1, C = 0011111100000001, Halt = 0 
 160 clk = 0, C = 0011111100000001, Halt = 1 => 30F1 
 161 clk = 0, C = 1000000000000000, Halt = 0 
 165 clk = 1, C = 0100000000000000, Halt = 0 
 166 clk = 1, C = 1100000000000000, Halt = 0 
 170 clk = 0, C = 1100000000000000, Halt = 0 
 175 clk = 1, C = 0110000000000000, Halt = 0 
 176 clk = 1, C = 1110000000000000, Halt = 0 
 180 clk = 0, C = 1110000000000000, Halt = 0 
 185 clk = 1, C = 0111000000000000, Halt = 0 
 186 clk = 1, C = 1111000000000000, Halt = 0 
 190 clk = 0, C = 1111000000000000, Halt = 0 
 195 clk = 1, C = 0111100000000000, Halt = 0 
 196 clk = 1, C = 1111100000000000, Halt = 0 
 200 clk = 0, C = 1111100000000000, Halt = 0 
 205 clk = 1, C = 0111110000000000, Halt = 0 
 206 clk = 1, C = 1111110000000000, Halt = 0 
 210 clk = 0, C = 1111110000000000, Halt = 0 
 215 clk = 1, C = 0111111000000000, Halt = 0 
 216 clk = 1, C = 1111111000000000, Halt = 0 
 220 clk = 0, C = 1111111000000000, Halt = 0 
 225 clk = 1, C = 0111111100000000, Halt = 0 
 226 clk = 1, C = 1111111100000000, Halt = 0 
 230 clk = 0, C = 1111111100000000, Halt = 0 
 235 clk = 1, C = 0111111110000000, Halt = 0 
 236 clk = 1, C = 1111111110000000, Halt = 0 
 240 clk = 0, C = 1111111110000000, Halt = 0 
 245 clk = 1, C = 0111111111000000, Halt = 0 
 250 clk = 0, C = 0111111111000000, Halt = 0 
 255 clk = 1, C = 0011111111100000, Halt = 0 
 260 clk = 0, C = 0011111111100000, Halt = 0 
 265 clk = 1, C = 0001111111110000, Halt = 0 
 270 clk = 0, C = 0001111111110000, Halt = 0 
 275 clk = 1, C = 0000111111111000, Halt = 0 
 280 clk = 0, C = 0000111111111000, Halt = 0 
 285 clk = 1, C = 0000011111111100, Halt = 0 
 290 clk = 0, C = 0000011111111100, Halt = 0 
 295 clk = 1, C = 0000001111111110, Halt = 0 
 300 clk = 0, C = 0000001111111110, Halt = 0 
 305 clk = 1, C = 0000000111111111, Halt = 0 
 306 clk = 1, C = 1000000111111111, Halt = 0 
 310 clk = 0, C = 1000000111111111, Halt = 0 
 315 clk = 1, C = 0100000011111111, Halt = 0 
 316 clk = 1, C = 1100000011111111, Halt = 0 
 320 clk = 0, C = 1100000011111111, Halt = 1 => C0FF 

 321 clk = 0, C = 1000000000000000, Halt = 0 
 325 clk = 1, C = 0100000000000000, Halt = 0 
 326 clk = 1, C = 1100000000000000, Halt = 0 
 330 clk = 0, C = 1100000000000000, Halt = 0 
 335 clk = 1, C = 0110000000000000, Halt = 0 
 336 clk = 1, C = 1110000000000000, Halt = 0 
 340 clk = 0, C = 1110000000000000, Halt = 0 
 345 clk = 1, C = 0111000000000000, Halt = 0 
 346 clk = 1, C = 1111000000000000, Halt = 0 
 350 clk = 0, C = 1111000000000000, Halt = 0 
 355 clk = 1, C = 0111100000000000, Halt = 0 
 356 clk = 1, C = 1111100000000000, Halt = 0 
 360 clk = 0, C = 1111100000000000, Halt = 0 
 365 clk = 1, C = 0111110000000000, Halt = 0 
 366 clk = 1, C = 1111110000000000, Halt = 0 
 370 clk = 0, C = 1111110000000000, Halt = 0 
 375 clk = 1, C = 0111111000000000, Halt = 0 
 376 clk = 1, C = 1111111000000000, Halt = 0 
 380 clk = 0, C = 1111111000000000, Halt = 0 
 385 clk = 1, C = 0111111100000000, Halt = 0 
 386 clk = 1, C = 1111111100000000, Halt = 0 
 390 clk = 0, C = 1111111100000000, Halt = 0 
 395 clk = 1, C = 0111111110000000, Halt = 0 
 396 clk = 1, C = 1111111110000000, Halt = 0 
 400 clk = 0, C = 1111111110000000, Halt = 0 
 405 clk = 1, C = 0111111111000000, Halt = 0 
 410 clk = 0, C = 0111111111000000, Halt = 0 
 415 clk = 1, C = 0011111111100000, Halt = 0 
 420 clk = 0, C = 0011111111100000, Halt = 0 
 425 clk = 1, C = 0001111111110000, Halt = 0 
 430 clk = 0, C = 0001111111110000, Halt = 0 
 435 clk = 1, C = 0000111111111000, Halt = 0 
 440 clk = 0, C = 0000111111111000, Halt = 0 
 445 clk = 1, C = 0000011111111100, Halt = 0 
 450 clk = 0, C = 0000011111111100, Halt = 0 
 455 clk = 1, C = 0000001111111110, Halt = 0 
 460 clk = 0, C = 0000001111111110, Halt = 0 
 465 clk = 1, C = 0000000111111111, Halt = 0 
 466 clk = 1, C = 1000000111111111, Halt = 0 
 470 clk = 0, C = 1000000111111111, Halt = 0 
 475 clk = 1, C = 0100000011111111, Halt = 0 
 476 clk = 1, C = 1100000011111111, Halt = 0 
 480 clk = 0, C = 1100000011111111, Halt = 1 => C0FF 
 481 clk = 0, C = 1000000000000000, Halt = 0 
 485 clk = 1, C = 0100000000000000, Halt = 0 
 486 clk = 1, C = 1100000000000000, Halt = 0 
 490 clk = 0, C = 1100000000000000, Halt = 0 
 495 clk = 1, C = 0110000000000000, Halt = 0 
 500 clk = 0, C = 0110000000000000, Halt = 0 
 505 clk = 1, C = 0011000000000000, Halt = 0 
 510 clk = 0, C = 0011000000000000, Halt = 0 
 515 clk = 1, C = 0001100000000000, Halt = 0 
 520 clk = 0, C = 0001100000000000, Halt = 0 
 525 clk = 1, C = 0000110000000000, Halt = 0 
 530 clk = 0, C = 0000110000000000, Halt = 0 
 535 clk = 1, C = 0000011000000000, Halt = 0 
 540 clk = 0, C = 0000011000000000, Halt = 0 
 545 clk = 1, C = 0000001100000000, Halt = 0 
 550 clk = 0, C = 0000001100000000, Halt = 0 
 555 clk = 1, C = 0000000110000000, Halt = 0 
 560 clk = 0, C = 0000000110000000, Halt = 0 
 565 clk = 1, C = 0000000011000000, Halt = 0 
 566 clk = 1, C = 1000000011000000, Halt = 0 
 570 clk = 0, C = 1000000011000000, Halt = 0 
 575 clk = 1, C = 0100000001100000, Halt = 0 
 576 clk = 1, C = 1100000001100000, Halt = 0 
 580 clk = 0, C = 1100000001100000, Halt = 0 
 585 clk = 1, C = 0110000000110000, Halt = 0 
 586 clk = 1, C = 1110000000110000, Halt = 0 
 590 clk = 0, C = 1110000000110000, Halt = 0 
 595 clk = 1, C = 0111000000011000, Halt = 0 
 596 clk = 1, C = 1111000000011000, Halt = 0 
 600 clk = 0, C = 1111000000011000, Halt = 0 
 605 clk = 1, C = 0111100000001100, Halt = 0 
 606 clk = 1, C = 1111100000001100, Halt = 0 
 610 clk = 0, C = 1111100000001100, Halt = 0 
 615 clk = 1, C = 0111110000000110, Halt = 0 
 616 clk = 1, C = 1111110000000110, Halt = 0 
 620 clk = 0, C = 1111110000000110, Halt = 0 
 625 clk = 1, C = 0111111000000011, Halt = 0 
 630 clk = 0, C = 0111111000000011, Halt = 0 
 635 clk = 1, C = 0011111100000001, Halt = 0 => 30F1 

...



For the previous result text file I thus fully enabled the chip output (no state Z) to be able to see its evolution. 
But as the multiplier is supposed to disable its output when the result is not ready, I changed a little the test file 
to implement this functionality (by setting CEz at 1 when the device is busy, which places C in a high 
impedance state). 
 

  
 
 
 
 
 
 
 
 



Chronogram result for 1st multiplication: -127 × -127 = 16129 (= 0x81 × 0x81 = 0x3F01) 

 

 
Chronogram result for 2nd multiplication: -127 × 127 = -16129 (= 0x81 × 0x7F = 0xC0FF) 

 
 
Chronogram result for 3rd multiplication: 127 × -127 = -16129 (= 0x7F × 0x81 = 0xC0FF) 

 
 
Chronogram result for 4th multiplication: 127 × 127 = 16129 (=0x7F × 0x7F = 0x3F01) 

 
 



BONUS : I wanted to test the multiplier a little more, then I've done a simulation of the Verilog code in 
Max+plus. As this software is not working exactly like Silos, I changed some of the codes: 
(the main difference is that the "initial" function is not really appreciated by Max+plus) 

 

 
 

 
 

 
 



 
 

 
 



 
 

 
 



 
 

SIMPLE EXAMPLE VALUES FOR THE SIMULATION: (the interesting part being after) 

 
 

We can se that positive and negative values are working (FF = -1 => 2×FF = -2 and FFFE = -2). 
 

  



Time analysis: This part is interesting because we can estimate the maximum speed of our component to 
compare it with the architectural description. 

 

 
 
This analysis gives a maximum time of 19.2ns in hot conditions. 
The maximum speed is thus around 1/19.2ns ≈ 52 MHz (but obviously, this value is just an estimation) 
 
In the report files (*.rpt) we can see, among other things, the chip selected by Max+plus 
 
 
For the behavioural multiplier , the MAX7000 family didn’t fit then I chose a FLEX6000 (EPF6010ATC100): 

 

 
 
 
 
for the RTL multiplier ( I chose also chose the FLEX600 to compare the occupation ratio): 
 

 
 
 
As we can see the occupation ration is greatly better in the RTL design: 41 / 8 = more than 5 times better! 
 
 
 
 
Note: I tried to compile the architectural but it made my computer freeze every time… 
 
 



For the behavioural multiplier (part2) : 

 
 

 
for the RTL multiplier(part2) : 

 
 

 
=> My RTL multiplier takes a few DFF more but if we 
compare the quantity of logic cells used there is 287 more 
in the behavioural than in the RTL. 
 
 
Even if we assume that it's because of a bad choice and we 
rebuild DFF with 6 NAND gates we have 287 / 6 = more 
than 47 DFF in excess. 
 
 
A positive-edge-triggered D flip-flop   =>   =>   =>  
 
This diagram shows that, as I sais before, a DFF is 
composed by 6 NAND gates 

 
 



Let's look at the time analysis of the automatic synthesis of the behavioural multiplier  : 
 

 
 
This analysis seems to give a maximum time of 12.4ns. The maximum speed is thus around 1/12.4ns ≈ 80MHz 
(but obviously, this value is just an estimation) 
 
Compared to the 52 MHz of the RTL description it's not what we would expect but we have to remember that 
the electronic is a perpetual compromise, the speed is better but it uses a lot more of silicon area... 
 
 
 
 

8 Conclusion 
 
 I'm really happy to have taken the time to compare the RTL synthesis and the behavioural synthesis 
with Max+plus. This is a good finalisation of the comparison of automatic and semi-manual synthesis. This 
report has been a really good approach to the synthesis fight. This assignment made me discover a lot of tricks 
with Max+plus simulator, Silos simulator and also Verilog HDL (definitively confusing considering that I've 
seen VHSIC HDL previous year). 
 
 However, I have discovered a good overview of these complex uses, but I’m obviously still very far of 
the full potentials. I also have discovered what is to investigate for real: as much for the numbering systems as 
for the multiplications algorithms and multipliers, I took a lot of time but I also learned a lot. And obviously I 
studied different levels of abstraction, where I've particularly struggled at the end. 
 
 My programs are definitively not the only means to reach the aim and obviously, improvements exist 
but anyway, I'm really proud to have discovered new design techniques and a new HDL, I know it also exists 
A lteraHDL, SystemC, and more than ten or so but I still have the time… 
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Index:  
 
Here is the Verilog code of the behavioural multiplier description used to compare to the RTL synthesis: 
 
 

 
 

 


