Name Honnet Cedric
BrU nel Student Number0531984
UNIVERSITY Group CodeME

WEST LOMDOMN

Workshop Session n°2 PIC16F877:
Analog to Digital Conversion, Pulse Width Modulation

1 Purpose

The purpose of this lab was to make us understaedconcepts of Analog to Digital
Conversion and Pulse Width Modulation using the Rii€rocontroller and its development board. Our
programming skills with assembly language, the afsémer and interrupt service routines were to be
greatly improved. On another hand, Real time iat@nfg and other concrete applications with the
PIC16F877 microcontroller were to be achievable.

To meet this challenge, we are given templatedilitonvith our understanding of the
corresponding comments. But | wanted to do a litte to finalize this project, | realized a voltere
coupled to our pulse width modulator, its particitjais to display the average of the voltage given

To explain what | understood, | will simply try tmmment it as if you, dear lector, didn’t
know anything about this project. But as my Englsiting is still not efficient enough, | will alsose
pictures and video to complete my explanations@an@h videos and .asm files is joined).

2 Analysis for the Tasks

ADC, main functionalities:
-Sample analog input values
-Sample and hold capacitor

-Compare with current approximation (from DAC) -AD starts with maximum possible
analog voltage output.

-SAR — successive approximation register. Holdsetu bit high, if comparator output is

high (Vin <= current approximation), then it reseéhe bit and moves to the next less
significant bit by setting it high. If low (Vin ®urrent approximation) then the bit is left
high and the SAR moves to the next less signifibarby setting it high.

-DAC just converts the value in the latehent approximation) back in to an analog
signal to compare with the input in the comparator

-The latch stores the value when the LS&mplete.

-The control logic counts the number okkand then when all counted tells the latch to
hold and store the value.

8-bit
Vi SAR

8-bit

latch g

start ——={ control
done -«—— logic

i

clock

Almost all the fundamental components of the PI@&t twere vital to understand and to write the
program code were found in the PIC16F877 data sheet

1. The ADCONO special function register: p111
a. Contains the settings for the AD conversion cloglest, which sets the Fosc ratio.
b. The analog channel select bits: 001 selects chdnwéich is the potentiometer on
AN1/RAL, or 000 selects channel 0 which is the Lidépendent resistor...
c. There is a bit for the GO/ , which is reset whem¢bnversion is complete, and can be
set when the user requires the ADC to start.
d. And finally, ADON is about the operating state lo¢ tA/D converter module.

2. The OPTION_REG register: p22
a. This contains settings about the timer and Watchmtegscalars, and pre-scalar
assignment(to either WDT or TMRO).
b. Post-scalar settings and
c. TMRO source setting(High — transition on RA4 pioy.— Internal instruction clock
signal).

3. The ADCONL1 register: p112

a. This contains settings for the justification of tiesult in to ADRESH:ADRESL. High
this sets the 10 bit converted value in to thetrighbits of the concatenated registers,
Low this sets the 10 bits in to the left 10 bitse W&e this set low and discard the 2 bits in
the ADRESL register.

b. The only other 3 bits select the configurationhe /O ports for ADC (PORTS A/E).
In this | used the setting 000 to set all A/D p@s$sAnalog, therefore disabling any
digital input or output (Digital output to PORT Beanot concerned).

4. The INTCON register: p20
a. This contains the settings for enabling unmasketajland peripheral interrupts. GIE,
PEIE.
b. Also the setting to enable the TMRO Overflow intgatris TOIE (high = enabled).
c. The overflow interrupt flag bit TOIF, (high = ovétved). This can be cleared or polled
in software.

5. The PIR1 register: p22
a. This mainly contains the Flag for A/D Converterdmtipt* (Conversion completion)
b. And the other bits are not going to be used in phigect.

These are the main SPR’s that understanding efjisired in the program. Also previous understanding
of basic I/O controls using TRISA/B and PORTA/Bassumed.
With this basic knowledge we can proceed to theecod

*Knowledge of the ADIE bit (A/D converter interruphable) in PIE1 SPR to enable the A/D interrupt,
and ADIF (A/D converter interrupt flag) in PIR1 SRdrtest for the A/D conversion completion is
required.

21 Task1

bit 7-6

bit 5-3

bit 2

bit 1
bit 0

ADCONO REGISTER (ADDRESS: 1Fh)

RWO RWO RWO RWO RWD RWD U0 RWO
ADCS1 | ADCs0 | cHs2 | cHs1 [cHso |GOMONE| — ADON
bit 7 bit 0

ADCS1:ADCS0: A/D Cenversion Clock Select bits
oo = Fosc/2
\ 01 =Fosc/a !
~-1p=fosg3zr -’
11 = Fre (clock derived from the internal A/D module RC oscillator)

CHS2:CHS0: Analog Channel Select bits
- 000 = channel 0 (RAD/AND)_ _

i__ 0017 channel 1, (RAT/ANT)
010 = channel 2, (RA2/ANZ)
011 = channel 3, (RA3/AN3)
100 = channel 4, (RAB/AN4)
101 = channel 5, (REOfANSE))
110 = channel 6, (RE1/ANG)(Y)

111 = channel 7, (RE2/ANT)Y
GO/MOMNE: A/D Conversion Status bit

IFADON = 1:
1 = AJD conversion in progress _[s_esting this bit starts the A/D canversion)

P st A L LGl s

1__ 0= AJD conversion not in progress(this bit is automatically cleared by hardware when the A/D

conversion is complete)
Unimplemented: Read as 0’

—~ -ADON: A OR bt - = ———————— - - .

1 1= A/D converter module is operating |

' _i = AlD-convertermodule is-shut-off ard consumes no operating current

For the first blank to fill in is then :

moviw B'01001001"

movwf ADCONO

; Setup A/D to read the Potential Meter
; with the parameters include Fosc/8, A/

on RA1
D operating, Sample Channel 1

For the next instruction we need option_reg:

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2-0

Note: To achieve a 1:1 prescaler assignment for
the TMRO reqgister, assign the prescaler to
the Watchdog Timer.

OPTION_REG REGISTER (ADDRESS 81h, 181h)
RAW-1 RAN-1 RANV-1 RIW-1 RAW-1 RAN-1 RAN-1 RAW-1
RBPU | INTEDG | Tocs | TosE [Psa | Ps2 PS1 PSO0
bit ¥ bit 0

REPU: PORTE Pull-up Enable bit

1= PORTB pull--ups are disabled
o =PORTB pU”—UpS are enabled by individual pOﬂ latch values

INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RBO/INT pin
o = Interrupt on falling edge of RBO/INT pin

TOCS: TMRO Clock Source Select bit

1 = Transition on RA4/TOCKI pin
o = Internal instruction cycle clock (CLKOUT)

TOSE: TMRO Source Edge Select bit

1 = Increment on high-to-low transition on RA4/TOCKI pin
o = Increment on low-to-high transition on RA4/TOCKI pin

- -PSA Prescaler Assignmenthit _ __ _______ R

| 1= Prescaleris assigned to the WDT i
'- -o-= Presealer{s-assigred to-{he Fmer-Rodkile- /

PS2:PS0: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate

000 | 1:2 1:1

The corresponding code is then :

moviw B'00001000" ; To set TMRO with prescale value of 1:1 we have t
movwf OPTION_REG ; the watch dog timer (see note p.19)
moviw B'00000011" ; Set RAO, RAL as Analog (1)nput, and the rest of

0 assign the prescaler to

PORTA as (O)utput (obvious)

Next register used:

ADCON1 REGISTER (ADDRESS 9Fh)

u-0 U-0 R/W-0 U-0 RW-0 RW-0 R/W-0 RW-0
| ADFM — | — | — | PcrG3 [PCFG2 | PCFG1 [PCFGO
bit 7 bit 0
bit 7 ADFM: A/D Result Format Select bit
- 1 =Right justified. & Most Significant bits of ADRESH are read as-0'.
\ 0= Left justified. & Least Significant bits of ADRESL are read as o,
bit6-4 '-Unimplememed:Readas 0 -~~~ -------------------- ’
bit 3-0 PCFG3:PCFGO0: A/D Port Configuration Control bits:
PCFG3: [AN7'" | ANG(™ | ANS™) | AN4 AN3 AN2 | AN1 | ANO Veer+ | Vieer CHan/
PCFGD | RE2 RE1 RED | RAS RA3 RA2 | RA1 | RAO Refs'?)
: 0000 K K A A B K A A~ Voo | Ves gl
0001 A A A A VREF+ A A A RA3 Wss m
0010 D D D A A A A A Voo Vss 510
0011 D D D A VrEF+ A A A RAZ Vss 4n
0100 D D D D A D A A Voo Vss 3/0
0101 D D D D WreF+ D A A RAZ Vss 21
0llx D D D D D D D D Voo Vss 0/0
1000 A A A A Vrert | VREF- A A RAZ RAZ 62
1001 D D A A A A A A Voo Vss 6/0
1010 D D A A WreFt A A A RAZ Vss 51
1011 D D A A Vrert | VREF- A A RAZ RAZ2 42
1100 D D D A Vrert | VREF- A A RAJ RAZ2 3r
1101 D D D D Vrert | VREF- A A RAJ RAZ2 22
1110 D D D D D D D A Voo Vss 110
1111 D D D D VRerF+ | VREF- D A RA3 RA2 12

The corresponding code is then :

moviw
movwf

B'00000000
ADCON1

; Set A/D result to be left justified and enables a
; with Vref+ = VDD and Vref- = VSS references

Il A/D channel

To setup TMRO we need to know an important detail
(p.130) !

12102 TMRO INTERRUPT

An overflow (FFh — 00h) in the TMRO register will set
flag bit TOIF (INTCON<2=).

FIGURE 5-1: BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER

CLEOQUT (= Fosci)

RA4TOCKI 3
pin |

SYMC !
2 = TMRO Reg
Cycies

on

l 8-bit Prescalar I
il [oo] |
‘Watchdog IR | af |
Timer | |
PSA L — ———— — A
WOT Enable b g !
MUX P3SA
IJ"J.:l-
Time-cut

Note: TOOS, TOSE, PSA, PS2-PED are (OPTION_REG=5-0=).

Set Flag B TOIF
Crert

rfiow ’

The corresponding code is then :

Main moviw H'EC' ; 256 - 20 = 236 = OXEC => 20 Tosc timer.
movwf TMRO ; Setup TMRO to implement settling time of 20us f or the A/D
bcf INTCON,TOIF ; Clear TMRO overflow Interrupt (TOIF) SEE NEXT PA GE

...and we can continue:

INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

RW-0 RW-D RW-D RW-D RIW-0 RW-0 RAW-D RW-x
GIE PEIE | TOIE INTE reie | ToF | wTF | REIF
bit 7 bit 0
bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts
0 = Disables all interrupts

bit 5 TOIE: TMRD Owerflow Interrupt Enable bit
1 = Enables the TMRD interrupt
0 = Disables the TMRD interrupt
bit 4 INTE: REIVINT External Interrupt Enable bit
1 = Enables the RBOVINT external interrupt
0 = Disables the RBIWVINT external interrupt
TOIF: TMRO Owverflow Interrupt Flag bit !
1= TMRD register has overflowed (must be cleared in software)
0 = TMRD register did not overflow [

bit 2

The corresponding code is then :

Loop btfss INTCON,TOIF ; TimerO counter expire? skip next instruction if yes (expired=0)
goto Loop ;
bcf INTCON,TOIF ; Clear TMRO overflow Interrupt (TOIF)
bsf ADCON1,GO_DONE ; Start A/D conversion

PIR1 REGISTER [ADDRESS 0Ch)

RIW-D RW-D R-0 R-D RAW-D RW-D RW-D RW-D
=spIE) | apiE | RoF | TwE | sseF | coriE | TMR2IE | TMRIE
bit 7 bitd
bit 7 PsPIF: Parallel Slave Port Read/\Write Intarrupt Flag bit

1= A read or a write operation has taken place (must be cleared in software)
0= Mo read or write has ocourmed

| ADIF: A/D Converter Interrupt Flag bit .
| 1= AnAD conversion completed '
'\ 1 = The A/D conversion is not complete { }

The corresponding code is then :

Wait btfss PIR1,ADIF ; Wait conversion complete, skip next instruction if
goto Wait ; it's completed (=TMRO overflow)
movf ADRESH,W ; Get the 8 MSB of 10-bit value, a nd write the
movwf PORTB ; A/ID result (MSB) to PORTB LEDs.
bef PIR1,ADIF ; Clear A/D completion flag
goto Loop ; Do it again

The complete code is also used in the task2 (butetlelectronic version is available in the cd).

Taskl conclusion :

Using the potentiometer, the PORTB LED’s increaBesn 0 to 255. The resolution of the A/D
conversion is 10bits, but only the most significardtits are displayed on PORTB.

The total voltage displayable is 5v, and the maximmalue of the digital equivalent displayed is FF
therefore 2.5v displayed 7F. The resolution of dization levels is 5v/2~ 20mV, this is the minimum
incrementation possible.

2.2 Task?2

The idea:

The value is displayed on the 7 segment LED, tpeatad bottom nibbles of ADRESH are displayed on
2 separate displays (determined by RA2 and RA3edsely), and are switched between fast
(frequency of TMRO) to give illusion that they dyeth on. The reason both displays are not displayed
using separate outputs is to minimize 1/O pin use.

The TMRO rate comes in useful here as this delagdime that it takes for the A/D to start again.

BV
an
. 1k
= 1 RAO
1k
a [50] }H — 1 RA1
f b 1k PR .
51| | o (281 | | B1] >H——|:|ﬂ RA2)
e c T 1k
[B4]| | d[B3] | |[B2] /—:I—P RA3 .
i |
dp [B7]
|_| |_| |_| |_| quad 7 - seg display
W L f
=g =g —p =4
RB? ° '—|1'=:|R|
RB6 - L mm
RBS o L Tier
RB4 ° I e
RB3 - L Tyznm
RBZ o | I T
RB1 - _—
RBO - [TS

The code:

After the operation of the task 1, the value in AES is moved to Temp via the Working register, and
the complement is made. This is ANDED with OF tefxkenly the bottom nibble.

This value is then added to the PCL in the calubroutine Seven_seg, and the seven segment code
relating to this value is returned to the workiegister, then output on to PORTB and to the display
setting up PORTA to output value in PORTB to sesegments.

Note:

The delay loop does not have a return command iaftéerefore runs through to the seven_seg servic
routine and then returns in to the loop label vativalue in working register and rewrites over the
working register with ADRESH.

This task required me to take the previously cakatele and combine it with the template for task 2:

Temp EQU 0x20

count EQU 0x21
ORG
goto

0x00
start

start BANKSEL PORTA

clrf PORTA ; Clear PORTA

clf PORTB ; Clear PORTB

moviw B'01000001" ; Setup A/D to read the Potenti

movwf ADCONO ; with the parameters include Fosc/8

BANKSEL OPTION_REG ; Select right memory page
moviw B'00001000'

movwf OPTION_REG ; Set TMRO with prescale value o
moviw B'00000011'; Set RAO, RA1 as Analog Input,
movwf TRISA

clf TRISB ; Set PORTB as output

moviw B'00001000'; To set TMRO with prescale val
movwf OPTION_REG ; the watch dog timer (see note

BANKSEL PORTB

Main moviw B'11101100'; 256 - 20 = 236 // counter
movwf TMRO ; Setup TMRO to implement settling ti
bcf INTCON,2 ; Clear TMRO Interrupt

Loop btfss INTCON,2 : Wait for TimerO counter to
goto Loop
bcf INTCON,2 ; Clear TMRO overflow Interrupt
bsf ADCONO,2 ; Start A/D conversion

Wait btfss PIR1,ADIF ; Wait for conversion to com
goto Wait
movf ADRESH,W ; Get MSB of 10-bit value (see PIC
movwf Temp
comf Temp ; complement the value
moviw OxOF
andwf Temp,W : obtain the bottom nibble
call Seven_seg ; getthe value from subroutine, m
movwf PORTB
moviw B'00001000' ; This turns on the 7 seg displ
movwf PORTA;
moviw .200 ; allow to generate delay (to stall be
movwf count
call delay

swapf Temp,F ; swapp top and bottom nibble

moviw OxOF
andwf Temp,W ; obtain the top nibble
call Seven_seg
movwf PORTB
moviw B'00000100' ; This sets the output to be on
movwf PORTA;
moviw .200 ; instruction generated delay again.
movwf count
call delay
bcf PIR1,ADIF ; Clear A/D completion flag
goto Loop

delay nop
decfsz count
goto delay

Seven_seg ; table lists 7 seg pins as dp, g, f, e,
andlw OxOF
addwf PCL,F

retw B'11000000' ;0
retw B'11111001';1
retw B'10100100' ;2
retw B'10110000';3
retw B'10011001';4
retw B'10010010';5
retlw B'10000011' ;6
retw B'11111000';7
retlw B'10000000' ;8
retlw B'10011000' ;9
retw B'10100000' ;a
retw B'10000011' ;b
retw B'10100111';c
retw B'10100001' ;d
retw B'10000110' ;e
retw B'10001110' ;f

END ; End of program

; User "BANKSEL" on any PORT wi

Il goto the right memory page

al Meter on RAO
, A/D enabled, Sample Channel 0,

f1:1
and the rest of PORTA as output

ue of 1:1 we have to assign the prescaler to
p.19)

for TMRO - Sampling rate
me of 20us for the A/D

expire, skip next instruction if it's expired;

plete, skit next instruction if it's completed

16F877 datasheet page-116), and write

ove to PORTB LED's
ay output (RA3) connecting to one display.

fore outputting on other display)

the display connected to RA2

d,c,b,a

PROVES OF CODE EFFICIENCE ARE GIVEN IN TASK 3

2.3 Task3

In the 3° part the aim was to create an .asm file which docleate a program enabling the
development board to read the voltage level ontarpiometer on the input RV3, convert it to a digit
equivalent using ADC, and create a changing oudpuvoltage using PWM.

The input voltage between 0-5v is read in to theCADonverted to a 0-255 digital equivalent, andthe
interpreted in to a duty cycle ‘0’ being 0% dutycleyand ‘255’ being 100% duty cycle.

The period of the PWM can be determined using tjuaon:

IPWM period = [(PR2) + 1] * 4 * Tosc * (TMR2 pre-ale valud)

The PR2 value is 254 (because of the lost cyclasthis is the maximum value to be held in theMPW
register (associated with TMR2), the Tosc being 4Mhd the pre-scalar being 1:1, the PWM period is
255us.

The value needed in PR2 is the number requiredpesent the intermediate values of the duty cycle.
255 is maximum (100%) and 0 is minimum (0%), thereffrom the equation the maximum value of
the PWM period should be 255us, this is when PR2*+lus = 255u$ therefore the size needed in
PR2 is 254. No duty cycle is representable as ‘\aftage and 100% duty cycle is represented as ‘on’
voltage.

Therefore by manually changing the input voltagetlom potentiometer, the output voltage level is
changed using PWM to digitally alter the valuelad butput d.c. through use of the transistor.

When development board with the program was coedecta spectrum analyser, the PWM output was
observed, and when the duty cycle was half of tW&\Pperiod, the digital value on the PIC showed
128 = 2.5v.

The process of part 3 is as follows:

PIC16F877
5V 5V o
Glue-logic
10k RA2 | #Common anode i
= a [BO] a [BO]
Y

Q2ZN3904 8x [st] g [B6] [Bbl] [Bf5L g [B6] 7[Bb1]
RC2 RBO..7 R
390 CI)DLYt\Qﬂt 190 gy | apesy 52] B4l d[e3 5821
dp [B7] dp [B7]

Note: some picture are given later for efficiency mpve.

This diagram shows the method of pul'se
width modulation occuring. The CCPRLL is
loaded to CCPR1H at start, then it iis
compared with the value of TMR2 as TMR2
is incremented until value equals that :of
CCPR1H, when this occurs, output pf
flipflop goes low. This is the duty cycle.

When the value in TMR2 equals that of PR2

DE}:yEEiigﬂeﬁ',-—-::=1DEh<E:; i
AT then the timer is reset and the flipflop set énd

CCPRIL

CCPR1H (Slawe);

AL RCZICCA

Comparator R = _Lﬁ

Rz ot 1) s the value in CCPRILL is latched in fo

‘JJ’ CCPR1H. This is the end of the PWM
Comparator TRISC=I= period. !
Clear Times, i
¥y CCP1 pin ang . !
- aich D.C TrisC controls the output of the PWM. :

We do not use the fractional part of the
NHote 1: The E-ot Smer s corcatenaled with 2-pit Intemal @ |+ CONVErSIoN. i
ciock, or 2 BFE of the prescaler, o cragke 10-blt tmea- b e e e e e e e

DaEe.

The basic flow of the program involves setting thgisters involved with conversion and input and
output, then setting up the timer and PWM duty eyarhd period.

Enabling interrupts, starting TMR2, checking foredlow, excecuting PWM ISR, writing result when
finished A/D, updating PWM duty cycle/ intensity.

Therefore the program is continually checking téeptiometer input to update the duty cycle for the
PWM.

FIGURE 8-4: PWM QUTPUT
' - Feriod -
- B -
Duty Cycle | i
i TMR2 = PR2

TMR2 = Duty Cycle

TMR2 = PR2

Task2& 3 Conclusion:

This experiment has been designed for demonstedtmmposes and the application has relativellelitt
practical use (as we are adjusting the voltage aignon the input).

It illustrates the point of being able to adjust tholtage digitally, showing that this can be auhted
and the voltage can be automatically altered uBM&M on the digitalized input voltage.

Note: the code is given later with a little improvenent (decimal display).

2.4 BONUS !!! (sorry for your time)

| was a little frustrated to finish like that thérdecided to improve the last code a little. | made
conversion to allow seeing the output voltage icial (more relevant than hexadecimal).

The principle:

-The maximum value extracted from the ADC is 1111}1= 255 => corresponds to Vref = 5V
(and 000000G9=> corresponds obviously to OV)

-Hence, to "normalize" the display, a solution dento proportionally map [0;255] in [0;5] thus the
operation is a division : 255/5 = 5133,

-To achieve this conversion | used an algorithnegiin lecture that divides an 8bits value by anothe
8bits value (the result being also in 8bits foritlteger part and for the reminder).

=> My problem was that after thé' tlivision, | had to multiply the reminder by 1@nd divide again
this result by33,.

Example in decimal ' [?'V'Sorr-'u __________________ .
______________ e integer part result :
. Dividende -+----» 98 33,/’ LR EEEEEEE
I___'II:::::::::::'__ v3 5 to obtain thenon-integer part result, we
! reminder Rem) -~ need to multiply the reminder (32) by 1{)

and continue the division:

=> 2" operation:

320 | 33

...the new reminder is now 23 but we don't care abiojt
23| X=9 because we already have our number after the commpa.
=> The result to display would (29

Same in HEXAdecimal

98| 33 " sam "
34 2X

...here again, we don't care about the reminder leut

=> 2" operation:

320| 33 have to interpret the non-integer resuf)= 01113
=> the solution is simple:
X=F 01115 =2+ 2%+ 2°+ 2*=0.935

(CAN BE ROUNDED UP TO 0.9)

To implement these operations, we could use anritligo to do division by 33 another for the
multiplication by 1¢, and do the division by 33again, but the code becomes really big.
As the ADC is already not completely exact, we ga@ a quite good approximation:

=> For the 3 operation, instead oRem xE: Rem ><L => | approximate byRem ><1
33 33/10 3

Approximation calculation:
In the worst case: 323 = 1Q,=1 000@ = 16=> BUT 320, /331 = {=111% =15

...thus we get an error of 1/16 = 6.25 % (not vergkivut tolerable)

The code:

; all files declarations
ORG 0x00
goto Init
ORG 0x04
goto ISR

Init bef INTCON, GIE
btfsc INTCON,GIE
goto Init
BANKSEL PORTA ; User BANKSEL on any PORT will got
clrf PORTA ; Clear PORTA
cif PORTB ; Clear PORTB
moviw b'01000001 ; Setup A/D to read the Potent
movwf ADCONO ; with the parameters include Fos
BANKSEL OPTION_REG
bsf PIE1,ADIE ; Enable A/D Interrupt
moviw b'00001000'
movwf OPTION_REG ; Set TMRO with prescale value
bsf INTCON,TOIE ; Unmask Timer Interrupt
moviw B'00000011' ; Set RAO, RAL1 as Analog Input
movwf TRISA,;
clrf TRISB ; Set PORTB as output
bcf TRISC,2 ; Setup PWM frequency output
moviw B'00000000' ; Set A/D result to be left ju
movwf ADCON1 ; and enables all A/D channel wit
moviw b'11111110° ; Setup PWM frequency at 254
movwf PR2 ; work out a PR2 (8-bit register) val
BANKSEL PORTB
clrf CCPR1L ; initialise the duty cyle size at
clf CCP1CON
moviw B'00000100'
movwf T2CON ; Turn on TMR2 with prescaler of 1:
moviw B'00001100'
movwf CCP1CON ; Set the Capture/Compare/PWM (CC
clrf Intensity
bsf INTCON,PEIE ; Unmask Peripheral Interrupt
bsf INTCON,GIE ; Unmask Global Interrupt

Loop movf Intensity,W ; Put the content of the v
movwf CCPR1L ; in CCP1RL which is the register
call Display
goto Loop

| [(C U DS

ISR movwf w_temp ; Save W content into w_temp

movf STATUS,W
movwf status_temp

Poll btfsc INTCON,TOIF
call AD_Start
btfsc PIR1,ADIF
call AD_Done

movf status_temp,W
movwf STATUS
swapf w_temp,F
swapf w_temp,W

retfie

AD_Start
bsf ADCONO,GO
bcf INTCON,TOIF
return

AD_Done
movf ADRESH,W
movwf Intensity
bcf PIR1,ADIF
return

; Save STATUS content into status

; Check if Timer interrup
; If YES, start A/D conversion
; Check if A/D has completed th
; If YES, get the A/D result and pu

; Restore STATUS content
; Restore W content

; Return where the program is interrupted
; Start A/D conversion
; Clear TMRO overflow Interrupt
; Return to the program where the call is
; get MSB of 10-bit value (see PI
; put the result into variable
; Clear A/D completion flag

; Return to the program where call is mad

are not witten here but are obviously in the .asmfile

o the right memory page

ial from the LDR (Channel 0)
c/8, A/D enabled, Analog Channel O

; Select right memory page

of 1:1

, and the rest of PORTA as output

stified (the 8 MSB result goes in ADRESH)
h Vref+ = VDD and Vref- = VSS ref
because of the "lost cycle"
ue so that 255 = 100% duty cycle.

1 and postscale of 1:1

P) module to just PWM mode

ariable called Intensity (result of the ADC)

to modify the PWM duty cycle

ervice Routine ;;;innnnnnnnnnnnnn

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

_temp before server the interrupt

ting for expired counter?

e conversion?
t "Intensity" in PORTB

made

C16F877 datasheet page-116), and
called Intensity

DS play R s
call convert
movf IntDispl,W ; prepare the integer result part

call Seven_seg_int ; use the appropriate table to

movf FItDispl,W ; prepare the float result part t
call Seven_seg_flt ; use the appropriate table to
movwf PORTB ; send to PORTB

moviw B'00001000' ; turn on the 7 seg connected
movwf PORTA,;

moviw .200 ; delay again...
movwf count
call delay
return
delaynop
decfsz count
goto delay
return
T T —

yyy

; this subroutine "converts" a binary value between
; considering that 11111111 = 5V then divide by .51

oV .51
movwf Divisor

call DIV8by8 ; call the division subroutine
movf Int,W
movwf IntDispl ; save the integer part resulted f
; continue the division but divide by 3 (because it
moviw 3
movwf Divisor
movf Rem,W
movwf Dividend

; then set the divisor to 3
; finish to prepare the division:
call DIV8by8 ; effectuate it : Rem /3

movf Int, W

movwf FItDispl ; save result of last division to
return
DIV8BbYS ;;i5iiininiinninn: source : Web CT ;

; division of an 8bit dividende by an 8bit divisor

13199933333900099999339333333330009919331933333337)

movf Dividend,W

movwf Int ; final Integer part will be in Int
clrf Rem ; final remainder will be in Rem
moviw 8

movwf count

chk decfsz count,F
goto branch

; check the count

return

; this subroutine converts hexa-dis

movwf PORTB ; send the "coded" valur to PORTB (t
moviw B'00000100' ; turn on the 7 seg connected

movwf PORTA,

moviw .200 ; generate delay (to stall before out
movwf count

call delay

"""""""""""""""""" play in decimal display.
to be displayed

display the float part.
o be displayed on the LEDs)
to RA2 to display the integer part.

putting on other display)

o be displayed
display the float part.

to RA3 to display the float part.

yyy

00000000 and 11111111 in "decimal*
= 0x33 and use 2 tables to display.

; and put (decimal)51 = 0x33 in the Divisor

rom the division by 51

's roughly = to multiply by 0x10 and divide by 0x33

set the dividend to Rem

be able to display the float part

yyy

13199933333900099999339333333339009919931933333333)

branch
bcf STATUS,C
rif Int,F
rlf Rem,F
movf Divisor, W
subwf Rem,W
btfss STATUS,C ; if we did not borrow then carr y is set
goto chk ; Is clear and we do not want to store Rem
movwf Rem ; is set and we need to store Rem and change Int_0
bsf Int,0

andlw B'00000111' ; to be sure not to go out of the table => no need to "and" the
addwf PCL,F ; PC with OXOF because the max value is supposed to be 5 (on 3bits)
; display:

retiv B'01000000' ; 0.
retiw B'01111001' ; L.
retw B'00100100' ;2.
retiw B'00110000' ;3.
4

5

retlw B'00011001'

retiw B'00010010' . => as the maximum voltag e is 5V we don't need more
retlw B'10000110' ; display: "E" in case of Erro r
retw B'10000110' ; display: "E" in case of Erro r

Seven_seg_flt ;;iiininninninn: table lists 7 segments for float part ;5555000000000
btfsc FltDispl,4 ; due to the approximation, the result can be 10000 instead of 1111
retw B'10011000' ; we thus display 9 (because 1 111 =>0.935 CAN BE ROUNDED UP TO 0.9)
andlw OxOF ; ...to be sure not to go out of the table
addwf PCL,F

; display:

retiv B'11000000' ;0
retiw B'11111001' ; 1 => because 0001 => 0.0625 CAN BE ROUNDED UP TO 0.1
retw B'11111001 ; 1 => because 0010 => 0.125 CAN BE ROUNDED UP TO 0.1
retw B'10100100° ; 2 => because 0011 => 0.1875 CAN BE ROUNDED UP TO 0.2
retiw B'10110000' ; 3 => because 0100 => 0.25 CAN BE ROUNDED UP TO 0.3
retiw B'10110000' ; 3 =>because 0101 => 0.3125 CAN BE ROUNDED UP TO 0.3
retw B'10011001' ; 4 => because 0110 => 0.375 CAN BE ROUNDED UP TO 0.4
retw B'10011001 ; 4 => because 0111 => 0.44 CAN BE ROUNDED UP TO 0.4
retiw B'10010010' ; 5 => because 1000 => 0.5
retiw B'10000011' ; 6 => because 1001 => 0.5625 CAN BE ROUNDED UP TO 0.6
retw B'10000011' ; 6 => because 1010 => 0.625 CAN BE ROUNDED UP TO 0.6
retw B'11111000 ; 7 =>because 1011 => 0.687 CAN BE ROUNDED UP TO 0.7
retiv B'10000000' ; 8 => because 1100 => 0.75 CAN BE ROUNDED UP TO 0.8
retiv B'10000000' ; 8 => because 1101 => 0.8125 CAN BE ROUNDED UP TO 0.8
retiv B'10011000' ; 9 =>because 1110 => 0.8725 CAN BE ROUNDED UP TO 0.9
retw B'10011000' ; 9 => because 1111 => 0.935 CAN BE ROUNDED UP TO 0.9
END

The pictures:

I've had the chance to have better than theserpgcais evidence, I've had a witness (you).

0.1V 1.0V 2.5V

4.0V 4.9V 5.0V

Note: I've also done pictures for taskl, 2 and Béxadecimal display) but it's not interesting lsea
now we've got the decimal display. As all this Va#is oriented on the final experiment, | finally wfid
really explain all register and bit used, but hththat you don't really need me to prove you thatow
how to read a data sheet, copy it and paste & ¢lone it in task 1).

3 Conclusion

This has many applications in industry by beinggab digitally control the output DC
without altering the voltage supply. This applicatiof the PIC is typical, such a small chip beibtga
to perform as glue logic to perform “fixes” to dig systems without having to redesign the whole
circuitry. When the board was connected to a smalor, it was observed that the speed of the motor
increased as the voltage applied was increaseddtalso observed that the motor created background
Electro Magnetic Force noise which created distarton the waveform observable. This is due to
Lenz's effect of the movement of the motor andabflicting magnetic and electrical forces inducing
current in the system. The method in which the PWa4 connected to the motor/LED was to connect
the PWM output to the base of a transistor viasaster. This transistor averages the voltage of the
PWM because the transistor is unable to switchiwitiee same period as the PWM. Also the transistor
controls the current flowing from collector to teenitter and therefore the voltage over the traosist
This enables the user to control the voltage dverl£D or Motor. This technique could be utilised i
cruise control in automotive industry to contra tluel injected in to the car, it could be usedutting
edge “intelligent carpet technology”, where thepedrsenses where people are in the room and
therefore alters the intensity of light in varioasas of the room, central heating controls, curtai
controls etc.. This would also be viable to useskxurity control systems.

Finally, in this lab | have learnt the concepts AD conversion, interfacing and the
applications of the PIC877 series, the use of Tmeeg displays and PWM using the PIC development
board. My programming skills with PIC16F877 assembtbde have improved and my ability and
familiarity with the use of timer capabilities amderrupt service routines have also improved dyeat
am now fairly confident in the use of PIC assembdyle to create modular programs calling and
returning from subroutines. | can see where and th@\PIC microcontroller can be used as glue and
fix logic to various large and complex digital dss to save money from not having to reconstruct
these large designs, and am confident in how tabgwit creating a PIC solution.

