

Name: Honnet Cedric
Student Number: 0531984
Group Code: ME

Workshop Session n°2 - PIC16F877:
Analog to Digital Conversion, Pulse Width Modulation

1 Purpose

 The purpose of this lab was to make us understand the concepts of Analog to Digital
Conversion and Pulse Width Modulation using the PIC microcontroller and its development board. Our
programming skills with assembly language, the use of timer and interrupt service routines were to be
greatly improved. On another hand, Real time interfacing and other concrete applications with the
PIC16F877 microcontroller were to be achievable.
 To meet this challenge, we are given templates to fill with our understanding of the
corresponding comments. But I wanted to do a little more to finalize this project, I realized a voltmeter
coupled to our pulse width modulator, its particularity is to display the average of the voltage given.
 To explain what I understood, I will simply try to comment it as if you, dear lector, didn’t
know anything about this project. But as my English writing is still not efficient enough, I will also use
pictures and video to complete my explanations (a CD with videos and .asm files is joined).

2 Analysis for the Tasks

ADC, main functionalities:

 -Sample analog input values

 -Sample and hold capacitor

 -Compare with current approximation (from DAC) – DAC starts with maximum possible
 analog voltage output.

 -SAR – successive approximation register. Holds current bit high, if comparator output is
 high (Vin <= current approximation), then it resets the bit and moves to the next less
 significant bit by setting it high. If low (Vin > current approximation) then the bit is left
 high and the SAR moves to the next less significant bit by setting it high.

 -DAC just converts the value in the latch(current approximation) back in to an analog
 signal to compare with the input in the comparator.

 -The latch stores the value when the LSB is complete.

 -The control logic counts the number of bits and then when all counted tells the latch to
 hold and store the value.

Almost all the fundamental components of the PIC that were vital to understand and to write the
program code were found in the PIC16F877 data sheet:

1. The ADCON0 special function register: p111
a. Contains the settings for the AD conversion clock select, which sets the Fosc ratio.
b. The analog channel select bits: 001 selects channel 1 which is the potentiometer on

AN1/RA1, or 000 selects channel 0 which is the Light dependent resistor…
c. There is a bit for the GO/ , which is reset when the conversion is complete, and can be

set when the user requires the ADC to start.
d. And finally, ADON is about the operating state of the A/D converter module.

2. The OPTION_REG register: p22
a. This contains settings about the timer and Watchdog pre-scalars, and pre-scalar

assignment(to either WDT or TMR0).
b. Post-scalar settings and
c. TMR0 source setting(High – transition on RA4 pin, Low – Internal instruction clock

signal).

3. The ADCON1 register: p112
a. This contains settings for the justification of the result in to ADRESH:ADRESL. High

this sets the 10 bit converted value in to the right 10 bits of the concatenated registers,
Low this sets the 10 bits in to the left 10 bits. We use this set low and discard the 2 bits in
the ADRESL register.

b. The only other 3 bits select the configuration of the I/O ports for ADC (PORTS A/E).
In this I used the setting 000 to set all A/D ports as Analog, therefore disabling any
digital input or output (Digital output to PORT B are not concerned).

4. The INTCON register: p20

a. This contains the settings for enabling unmasked global and peripheral interrupts. GIE,
PEIE.

b. Also the setting to enable the TMR0 Overflow interrupt is TOIE (high = enabled).
c. The overflow interrupt flag bit TOIF, (high = overflowed). This can be cleared or polled

in software.

5. The PIR1 register: p22

a. This mainly contains the Flag for A/D Converter Interrupt* (Conversion completion)
b. And the other bits are not going to be used in this project.

These are the main SPR’s that understanding of is required in the program. Also previous understanding
of basic I/O controls using TRISA/B and PORTA/B is assumed.
With this basic knowledge we can proceed to the code.

*Knowledge of the ADIE bit (A/D converter interrupt enable) in PIE1 SPR to enable the A/D interrupt,
and ADIF (A/D converter interrupt flag) in PIR1 SPR to test for the A/D conversion completion is
required.

2.1 Task 1

For the first blank to fill in is then :
movlw B'01001001' ; Setup A/D to read the Potential Meter on RA1
movwf ADCON0 ; with the parameters include Fosc/8, A/ D operating, Sample Channel 1

For the next instruction we need option_reg:

The corresponding code is then :
movlw B'00001000' ; To set TMR0 with prescale value of 1:1 we have t o assign the prescaler to
movwf OPTION_REG ; the watch dog timer (see note p.19)

movlw B'00000011' ; Set RA0, RA1 as Analog (1)nput, and the rest of PORTA as (0)utput (obvious)

Next register used:

The corresponding code is then :
movlw B'00000000' ; Set A/D result to be left justified and enables a ll A/D channel
movwf ADCON1 ; with Vref+ = VDD and Vref- = VSS references

To setup TMR0 we need to know an important detail:

(p.130)

The corresponding code is then :
Main movlw H'EC' ; 256 - 20 = 236 = 0xEC => 20 Tosc timer.
 movwf TMR0 ; Setup TMR0 to implement settling time of 20us f or the A/D
 bcf INTCON,T0IF ; Clear TMR0 overflow Interrupt (T0IF) SEE NEXT PA GE

…and we can continue:

The corresponding code is then :
Loop btfss INTCON,T0IF ; Timer0 counter expire? skip next instruction if yes (expired=0)
 goto Loop ;
 bcf INTCON,T0IF ; Clear TMR0 overflow Interrupt (T0IF)
 bsf ADCON1,GO_DONE ; Start A/D conversion

The corresponding code is then :
Wait btfss PIR1,ADIF ; Wait conversion complete, skip next instruction if
 goto Wait ; it’s completed (=TMRO overflow)
 movf ADRESH,W ; Get the 8 MSB of 10-bit value, a nd write the
 movwf PORTB ; A/D result (MSB) to PORTB LEDs.
 bcf PIR1,ADIF ; Clear A/D completion flag
 goto Loop ; Do it again

The complete code is also used in the task2 (but the electronic version is available in the cd).

Task1 conclusion :

Using the potentiometer, the PORTB LED’s increases from 0 to 255. The resolution of the A/D
conversion is 10bits, but only the most significant 8 bits are displayed on PORTB.

The total voltage displayable is 5v, and the maximum value of the digital equivalent displayed is FF
therefore 2.5v displayed 7F. The resolution of quantization levels is 5v/28 ≈ 20mV, this is the minimum
incrementation possible.

2.2 Task 2

The idea:
The value is displayed on the 7 segment LED, the top and bottom nibbles of ADRESH are displayed on
2 separate displays (determined by RA2 and RA3 respectively), and are switched between fast
(frequency of TMR0) to give illusion that they are both on. The reason both displays are not displayed
using separate outputs is to minimize I/O pin use.
The TMR0 rate comes in useful here as this delays the time that it takes for the A/D to start again.

The code:
After the operation of the task 1, the value in ADRESH is moved to Temp via the Working register, and
the complement is made. This is ANDED with 0F to keep only the bottom nibble.
This value is then added to the PCL in the call to subroutine Seven_seg, and the seven segment code
relating to this value is returned to the working register, then output on to PORTB and to the display by
setting up PORTA to output value in PORTB to seven segments.

Note:
The delay loop does not have a return command after it, therefore runs through to the seven_seg service
routine and then returns in to the loop label with a value in working register and rewrites over the
working register with ADRESH.

This task required me to take the previously created code and combine it with the template for task 2:

Temp EQU 0x20
count EQU 0x21
 ORG 0x00
 goto start

start BANKSEL PORTA ; User "BANKSEL" on any PORT wi ll goto the right memory page
 clrf PORTA ; Clear PORTA
 clrf PORTB ; Clear PORTB
 movlw B'01000001' ; Setup A/D to read the Potenti al Meter on RA0
 movwf ADCON0 ; with the parameters include Fosc/8 , A/D enabled, Sample Channel 0,

 BANKSEL OPTION_REG ; Select right memory page
 movlw B'00001000'
 movwf OPTION_REG ; Set TMR0 with prescale value o f 1:1
 movlw B'00000011' ; Set RA0, RA1 as Analog Input, and the rest of PORTA as output
 movwf TRISA
 clrf TRISB ; Set PORTB as output
 movlw B'00001000' ; To set TMR0 with prescale val ue of 1:1 we have to assign the prescaler to
 movwf OPTION_REG ; the watch dog timer (see note p.19)

 BANKSEL PORTB
Main movlw B'11101100' ; 256 - 20 = 236 // counter for TMR0 - Sampling rate
 movwf TMR0 ; Setup TMR0 to implement settling ti me of 20us for the A/D
 bcf INTCON,2 ; Clear TMR0 Interrupt

Loop btfss INTCON,2 ; Wait for Timer0 counter to expire, skip next instruction if it’s expired;
 goto Loop
 bcf INTCON,2 ; Clear TMR0 overflow Interrupt
 bsf ADCON0,2 ; Start A/D conversion

Wait btfss PIR1,ADIF ; Wait for conversion to com plete, skit next instruction if it’s completed
 goto Wait
 movf ADRESH,W ; Get MSB of 10-bit value (see PIC 16F877 datasheet page-116), and write
 movwf Temp
 comf Temp ; complement the value
 movlw 0x0F
 andwf Temp,W ; obtain the bottom nibble
 call Seven_seg ; get the value from subroutine, m ove to PORTB LED's
 movwf PORTB
 movlw B'00001000' ; This turns on the 7 seg displ ay output (RA3) connecting to one display.
 movwf PORTA;
 movlw .200 ; allow to generate delay (to stall be fore outputting on other display)
 movwf count
 call delay
 swapf Temp,F ; swapp top and bottom nibble
 movlw 0x0F
 andwf Temp,W ; obtain the top nibble
 call Seven_seg
 movwf PORTB
 movlw B'00000100' ; This sets the output to be on the display connected to RA2
 movwf PORTA;
 movlw .200 ; instruction generated delay again.
 movwf count
 call delay
 bcf PIR1,ADIF ; Clear A/D completion flag
 goto Loop

delay nop
 decfsz count
 goto delay

Seven_seg ; table lists 7 seg pins as dp, g, f, e, d, c, b, a
 andlw 0x0F
 addwf PCL,F
 retlw B'11000000' ;0
 retlw B'11111001' ;1
 retlw B'10100100' ;2
 retlw B'10110000' ;3
 retlw B'10011001' ;4
 retlw B'10010010' ;5
 retlw B'10000011' ;6
 retlw B'11111000' ;7
 retlw B'10000000' ;8
 retlw B'10011000' ;9
 retlw B'10100000' ;a
 retlw B'10000011' ;b
 retlw B'10100111' ;c
 retlw B'10100001' ;d
 retlw B'10000110' ;e
 retlw B'10001110' ;f

 END ; End of program

PROVES OF CODE EFFICIENCE ARE GIVEN IN TASK 3

2.3 Task 3

In the 3rd part the aim was to create an .asm file which would create a program enabling the
development board to read the voltage level on a potentiometer on the input RV3, convert it to a digital
equivalent using ADC, and create a changing output d.c voltage using PWM.
The input voltage between 0-5v is read in to the ADC, converted to a 0-255 digital equivalent, and then
interpreted in to a duty cycle ‘0’ being 0% duty cycle and ‘255’ being 100% duty cycle.

The period of the PWM can be determined using the equation:

 PWM period = [(PR2) + 1] * 4 * Tosc * (TMR2 pre-scale value)

The PR2 value is 254 (because of the lost cycle in , as this is the maximum value to be held in the PWM
register (associated with TMR2), the Tosc being 4Mhz and the pre-scalar being 1:1, the PWM period is
255us.
The value needed in PR2 is the number required to represent the intermediate values of the duty cycle.
255 is maximum (100%) and 0 is minimum (0%), therefore from the equation the maximum value of
the PWM period should be 255us, this is when PR2 + 1 * 1us = 255us therefore the size needed in
PR2 is 254. No duty cycle is representable as ‘off’ voltage and 100% duty cycle is represented as ‘on’
voltage.
Therefore by manually changing the input voltage on the potentiometer, the output voltage level is
changed using PWM to digitally alter the value of the output d.c. through use of the transistor.

When development board with the program was connected to a spectrum analyser, the PWM output was
observed, and when the duty cycle was half of the PWM period, the digital value on the PIC showed
128 = 2.5v.

The process of part 3 is as follows:

Note: some picture are given later for efficiency prove.

a [B0]

b
[B1]

c
[B2]d [B3]

e
[B4]

f
[B5] g [B6]

dp [B7]

a [B0]

b
[B1]

c
[B2]d [B3]

e
[B4]

f
[B5] g [B6]

dp [B7]

The basic flow of the program involves setting the registers involved with conversion and input and
output, then setting up the timer and PWM duty cycle and period.
Enabling interrupts, starting TMR2, checking for overflow, excecuting PWM ISR, writing result when
finished A/D, updating PWM duty cycle/ intensity.
Therefore the program is continually checking the potentiometer input to update the duty cycle for the
PWM.

Task2&3 Conclusion:

This experiment has been designed for demonstrational purposes and the application has relatively little
practical use (as we are adjusting the voltage manually on the input).
It illustrates the point of being able to adjust the voltage digitally, showing that this can be automated
and the voltage can be automatically altered using PWM on the digitalized input voltage.

Note: the code is given later with a little improvement (decimal display).

This diagram shows the method of pulse
width modulation occuring. The CCPR1L is
loaded to CCPR1H at start, then it is
compared with the value of TMR2 as TMR2
is incremented until value equals that of
CCPR1H, when this occurs, output of
flipflop goes low. This is the duty cycle.
When the value in TMR2 equals that of PR2
then the timer is reset and the flipflop set and
the value in CCPR1L is latched in to
CCPR1H. This is the end of the PWM
period.

TrisC controls the output of the PWM.
We do not use the fractional part of the
conversion.

2.4 BONUS ! ! ! (sorry for your time)

I was a little frustrated to finish like that then I decided to improve the last code a little. I made a
conversion to allow seeing the output voltage in decimal (more relevant than hexadecimal).

The principle:

-The maximum value extracted from the ADC is 11111111B = 255 => corresponds to Vref = 5V
(and 00000000B => corresponds obviously to 0V)

-Hence, to "normalize" the display, a solution can be to proportionally map [0;255] in [0;5] thus the
operation is a division : 255/5 = 51 = 33H

-To achieve this conversion I used an algorithm given in lecture that divides an 8bits value by another
8bits value (the result being also in 8bits for the integer part and for the reminder).

=> My problem was that after the 1st division, I had to multiply the reminder by 10H and divide again
this result by 33H.

Example in decimal:

 98 33

 320 2.X

=> 2nd operation:

 320 33

 23 X = 9

Same in HEXAdecimal:

 98 33

 320 2.X

=> 2nd operation:

 320 33

 … X = F

To implement these operations, we could use an algorithm to do division by 33H, another for the
multiplication by 10H and do the division by 33H again, but the code becomes really big.
As the ADC is already not completely exact, we can use a quite good approximation:

=> For the 2nd operation, instead of:
10

Rem ×
33

=
1

Rem ×
33/10

 => I approximate by:
1

Rem ×
3

Approximation calculation:
In the worst case: 32H /3 = 10H = 1 0000B = 16 => BUT 320H /33H = FH = 1111B = 15

…thus we get an error of 1/16 = 6.25 % (not very small but tolerable)

to obtain the non-integer part result, we
need to multiply the reminder (32) by 10
and continue the division:

…the new reminder is now 23 but we don't care about it
because we already have our number after the comma.
=> The result to display would be 2.9

 same

…here again, we don't care about the reminder but we
have to interpret the non-integer result 0.FH = 0.1111B
 => the solution is simple:
 0.1111B = 2-1 + 2-2 + 2-3 + 2-4 = 0.935
 (CAN BE ROUNDED UP TO 0.9)

reminder (Rem)

Dividende

Divisor

integer part result

The code:

; all files declarations are not written here but are obviously in the .asm file

 ORG 0x00
 goto Init
 ORG 0x04
 goto ISR

Init bcf INTCON, GIE
 btfsc INTCON,GIE
 goto Init

 BANKSEL PORTA ; User BANKSEL on any PORT will got o the right memory page
 clrf PORTA ; Clear PORTA
 clrf PORTB ; Clear PORTB
 movlw b'01000001' ; Setup A/D to read the Potent ial from the LDR (Channel 0)
 movwf ADCON0 ; with the parameters include Fos c/8, A/D enabled, Analog Channel 0

 BANKSEL OPTION_REG ; Select right memory page
 bsf PIE1,ADIE ; Enable A/D Interrupt
 movlw b'00001000'
 movwf OPTION_REG ; Set TMR0 with prescale value of 1:1
 bsf INTCON,T0IE ; Unmask Timer Interrupt
 movlw B'00000011' ; Set RA0, RA1 as Analog Input , and the rest of PORTA as output
 movwf TRISA;
 clrf TRISB ; Set PORTB as output
 bcf TRISC,2 ; Setup PWM frequency output
 movlw B'00000000' ; Set A/D result to be left ju stified (the 8 MSB result goes in ADRESH)
 movwf ADCON1 ; and enables all A/D channel wit h Vref+ = VDD and Vref- = VSS ref
 movlw b'11111110' ; Setup PWM frequency at 254 because of the "lost cycle"
 movwf PR2 ; work out a PR2 (8-bit register) val ue so that 255 = 100% duty cycle.

 BANKSEL PORTB
 clrf CCPR1L ; initialise the duty cyle size at 0
 clrf CCP1CON
 movlw B'00000100'
 movwf T2CON ; Turn on TMR2 with prescaler of 1: 1 and postscale of 1:1
 movlw B'00001100'
 movwf CCP1CON ; Set the Capture/Compare/PWM (CC P) module to just PWM mode
 clrf Intensity
 bsf INTCON,PEIE ; Unmask Peripheral Interrupt
 bsf INTCON,GIE ; Unmask Global Interrupt

Loop movf Intensity,W ; Put the content of the v ariable called Intensity (result of the ADC)
 movwf CCPR1L ; in CCP1RL which is the register to modify the PWM duty cycle
 call Display
 goto Loop

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Interrupt S ervice Routine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;

ISR movwf w_temp ; Save W content into w_temp
 movf STATUS,W ; Save STATUS content into status _temp before server the interrupt
 movwf status_temp

Poll btfsc INTCON,T0IF ; Check if Timer interrup ting for expired counter?
 call AD_Start ; If YES, start A/D conversion
 btfsc PIR1,ADIF ; Check if A/D has completed th e conversion?
 call AD_Done ; If YES, get the A/D result and pu t "Intensity" in PORTB

 movf status_temp,W
 movwf STATUS ; Restore STATUS content
 swapf w_temp,F ; Restore W content
 swapf w_temp,W

 retfie ; Return where the program is interrupted

AD_Start
 bsf ADCON0,GO ; Start A/D conversion
 bcf INTCON,T0IF ; Clear TMR0 overflow Interrupt

 return ; Return to the program where the call is made

AD_Done
 movf ADRESH,W ; get MSB of 10-bit value (see PI C16F877 datasheet page-116), and
 movwf Intensity ; put the result into variable called Intensity
 bcf PIR1,ADIF ; Clear A/D completion flag

 return ; Return to the program where call is mad e

Display ;;; ;;; ;;
 call convert ; this subroutine converts hexa-dis play in decimal display.
 movf IntDispl,W ; prepare the integer result part to be displayed

 call Seven_seg_int ; use the appropriate table to display the float part.
 movwf PORTB ; send the "coded" valur to PORTB (t o be displayed on the LEDs)
 movlw B'00000100' ; turn on the 7 seg connected to RA2 to display the integer part.
 movwf PORTA;

 movlw .200 ; generate delay (to stall before out putting on other display)
 movwf count
 call delay

 movf FltDispl,W ; prepare the float result part t o be displayed
 call Seven_seg_flt ; use the appropriate table to display the float part.
 movwf PORTB ; send to PORTB
 movlw B'00001000' ; turn on the 7 seg connected to RA3 to display the float part.
 movwf PORTA;

 movlw .200 ; delay again...
 movwf count
 call delay
 return

delay nop
 decfsz count
 goto delay
 return

convert ;;; ;;; ;;
; this subroutine "converts" a binary value between 00000000 and 11111111 in "decimal"
; considering that 11111111 = 5V then divide by .51 = 0x33 and use 2 tables to display.
;;; ;;; ;; movwf
 movlw .51
 movwf Divisor ; and put (decimal)51 = 0x33 in the Divisor

 call DIV8by8 ; call the division subroutine

 movf Int,W
 movwf IntDispl ; save the integer part resulted f rom the division by 51

; continue the division but divide by 3 (because it 's roughly = to multiply by 0x10 and divide by 0x33)
 movlw 3
 movwf Divisor ; then set the divisor to 3
 movf Rem,W
 movwf Dividend ; finish to prepare the division: set the dividend to Rem

 call DIV8by8 ; effectuate it : Rem / 3

 movf Int,W
 movwf FltDispl ; save result of last division to be able to display the float part
 return

DIV8by8 ;;;;;;;;;;;;;;;;;;;;;;;;; source : Web CT ; ;;; ;;
; division of an 8bit dividende by an 8bit divisor => result: 8bit Integer part and 8bit Reminder
;;; ;;; ;;
 movf Dividend,W
 movwf Int ; final Integer part will be in Int
 clrf Rem ; final remainder will be in Rem
 movlw 8
 movwf count

branch
 bcf STATUS,C
 rlf Int,F
 rlf Rem,F
 movf Divisor,W
 subwf Rem,W
 btfss STATUS,C ; if we did not borrow then carr y is set
 goto chk ; is clear and we do not want to store Rem
 movwf Rem ; is set and we need to store Rem and change Int_0
 bsf Int,0

chk decfsz count,F ; check the count
 goto branch

 return

Seven_seg_int ;;;;;;;;;;;;;;;;;;;;;;; table lists 7 segments for integer part ;;;;;;;;;;;;;;;;;;;;;;;; ;;

 andlw B'00000111' ; to be sure not to go out of the table => no need to "and" the
 addwf PCL,F ; PC with 0x0F because the max value is supposed to be 5 (on 3bits)

 ; display:
 retlw B'01000000' ; 0.
 retlw B'01111001' ; 1.
 retlw B'00100100' ; 2.
 retlw B'00110000' ; 3.
 retlw B'00011001' ; 4.
 retlw B'00010010' ; 5. => as the maximum voltag e is 5V we don't need more

 retlw B'10000110' ; display: "E" in case of Erro r
 retlw B'10000110' ; display: "E" in case of Erro r
;;; ;;; ;;

Seven_seg_flt ;;;;;;;;;;;;;;;;;;;;;;; table lists 7 segments for float part ;;;;;;;;;;;;;;;;;;;;;;;;;; ;;

 btfsc FltDispl,4 ; due to the approximation, the result can be 10000 instead of 1111
 retlw B'10011000' ; we thus display 9 (because 1 111 => 0.935 CAN BE ROUNDED UP TO 0.9)

 andlw 0x0F ; ...to be sure not to go out of the table
 addwf PCL,F
 ; display:
 retlw B'11000000' ; 0
 retlw B'11111001' ; 1 => because 0001 => 0.0625 CAN BE ROUNDED UP TO 0.1
 retlw B'11111001' ; 1 => because 0010 => 0.125 CAN BE ROUNDED UP TO 0.1
 retlw B'10100100' ; 2 => because 0011 => 0.1875 CAN BE ROUNDED UP TO 0.2
 retlw B'10110000' ; 3 => because 0100 => 0.25 CAN BE ROUNDED UP TO 0.3
 retlw B'10110000' ; 3 => because 0101 => 0.3125 CAN BE ROUNDED UP TO 0.3
 retlw B'10011001' ; 4 => because 0110 => 0.375 CAN BE ROUNDED UP TO 0.4
 retlw B'10011001' ; 4 => because 0111 => 0.44 CAN BE ROUNDED UP TO 0.4
 retlw B'10010010' ; 5 => because 1000 => 0.5
 retlw B'10000011' ; 6 => because 1001 => 0.5625 CAN BE ROUNDED UP TO 0.6
 retlw B'10000011' ; 6 => because 1010 => 0.625 CAN BE ROUNDED UP TO 0.6
 retlw B'11111000' ; 7 => because 1011 => 0.687 CAN BE ROUNDED UP TO 0.7
 retlw B'10000000' ; 8 => because 1100 => 0.75 CAN BE ROUNDED UP TO 0.8
 retlw B'10000000' ; 8 => because 1101 => 0.8125 CAN BE ROUNDED UP TO 0.8
 retlw B'10011000' ; 9 => because 1110 => 0.8725 CAN BE ROUNDED UP TO 0.9
 retlw B'10011000' ; 9 => because 1111 => 0.935 CAN BE ROUNDED UP TO 0.9
;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

 END

The pictures:
I've had the chance to have better than these pictures as evidence, I've had a witness (you).

 0.1V 1.0V 2.5V

 4.0V 4.9V 5.0V

Note: I've also done pictures for task1, 2 and 3 (+ hexadecimal display) but it's not interesting because
now we've got the decimal display. As all this lab was oriented on the final experiment, I finally didn't
really explain all register and bit used, but I think that you don't really need me to prove you that I know
how to read a data sheet, copy it and paste it (I've done it in task 1).

3 Conclusion

 This has many applications in industry by being able to digitally control the output DC
without altering the voltage supply. This application of the PIC is typical, such a small chip being able
to perform as glue logic to perform “fixes” to digital systems without having to redesign the whole
circuitry. When the board was connected to a small motor, it was observed that the speed of the motor
increased as the voltage applied was increased. It was also observed that the motor created background
Electro Magnetic Force noise which created distortion on the waveform observable. This is due to
Lenz's effect of the movement of the motor and the conflicting magnetic and electrical forces inducing
current in the system. The method in which the PWM was connected to the motor/LED was to connect
the PWM output to the base of a transistor via a resistor. This transistor averages the voltage of the
PWM because the transistor is unable to switch within the same period as the PWM. Also the transistor
controls the current flowing from collector to the emitter and therefore the voltage over the transistor.
This enables the user to control the voltage over the LED or Motor. This technique could be utilised in
cruise control in automotive industry to control the fuel injected in to the car, it could be used in cutting
edge “intelligent carpet technology”, where the carpet senses where people are in the room and
therefore alters the intensity of light in various areas of the room, central heating controls, curtain
controls etc.. This would also be viable to use for security control systems.
 Finally, in this lab I have learnt the concepts of A/D conversion, interfacing and the
applications of the PIC877 series, the use of 7 segment displays and PWM using the PIC development
board. My programming skills with PIC16F877 assembly code have improved and my ability and
familiarity with the use of timer capabilities and interrupt service routines have also improved greatly. I
am now fairly confident in the use of PIC assembly code to create modular programs calling and
returning from subroutines. I can see where and how the PIC microcontroller can be used as glue and
fix logic to various large and complex digital designs to save money from not having to reconstruct
these large designs, and am confident in how to go about creating a PIC solution.

